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ABSTRACT  

 Implementation of clinical trials is a necessary step in increasing medical knowledge, 

such as providing information about the efficacy of an innovative medical device, procedure, or a 

medication. To establish the efficacy, human participants are carefully selected based on their 

characteristics suitable for the study. They are randomly assigned to either a treatment or control 

group and are monitored and measured over time to detect any physical changes. Clinical data 

obtained this way is vital in determining the efficacy of the tested product. In this thesis, we give 

an overview of a broad range of statistical methodology used in analysis of clinical data. We 

present techniques from survival analysis, longitudinal regression modeling, and Bayesian 

monitoring of clinical trials. For each method, we discuss theoretical framework and illustrate 

with an application to a suitable data set.
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CHAPTER 1 

INTRODUCTION  

1.1 Overview of Clinical Trials 

A clinical trial is a research study, or investigation, performed in human subjects with the 

purpose of evaluating the efficacy and/or safety of either an innovative medical device, medical 

procedure, or medication that is administered to the treatment group patients as compared to the 

control group patients who are administered a placebo or the standard therapy. The innovative 

treatment is tested before it gets marketed to the general consumer population.  

1.1.1. Carrying Out a Clinical Trial 

 To briefly summarize the process, for a clinical trial procedure to be carried out, 

researchers must first select qualified candidates from a pool of individuals for their study. To do 

so, they must find candidates who have certain characteristics suitable for their study. Once 

qualified candidates are chosen, they are notified of their rights, benefits, and risks of 

participating in these trials. This process is known as the informed consent process. During this 

process, candidates (which we will now refer to as “patients”) sign a consent form, confirming 

their intent to participate in the trial.  

 At enrollment for the clinical trial, patients receive an initial treatment. From there, 

patients are expected by the researchers to make follow-up visits, meaning that patients must 

check into the research lab in timely intervals specified by the researchers, to monitor any 

physical changes resulting from the treatment. After the last scheduled follow-up visit, each 

patient has the choice of continuing in the study or dropping out. Those who want to continue 

must sign another informed consent form, accepting the willingness of continuing in the study. 

Those who wish not to continue can drop out of the study. There are many reasons why a patient 
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would want to drop out of the study. These reasons include either adverse life events (such as 

mental health problems, contracting a certain disease, etc.), or voluntary discontinuation, 

meaning maybe the trial was not effective for the patient.  

 A clinical trial may be stopped earlier when a predetermined number of subjects have 

been accrued, or if the collected data strongly prove the efficacy of the tested treatment or show 

that the treatment is harmful. We will illustrate the concept later in Chapter 4.   

1.1.2 Phases of a Clinical Trial 

 According to the National Institute of Aging (2020), clinical trials typically progress 

through four phases to test a treatment, find the appropriate dosage, and look for side effects. 

Now if, for example, after the first three phases, the researchers find a drug or medical device to 

be safe and effective, then the FDA approves it for clinical use and continues to monitor its 

effects.  

 Clinical trials are divided and described by their phase. These four phases are 

summarized as follows.  

 Phase I: A new product or treatment is tested on a small group of healthy subjects 

(typically 20-80 individuals) to determine its safety.  

 Phase II: This is where the initial clinical investigation begins. A phase II trial tests the 

product or treatment on a larger group of patients (typically 100-300 individuals) to determine, 

from preliminary data, the effectiveness of the drug on patients who have a certain disease or 

condition.  In this phase, the drug’s safety and side effects are closely monitored. 

Phase III: More information about safety and effectiveness of either the drug or treatment 

is gathered. The test is usually carried out on a very large group of patients (typically 500-3000) 

with diverse backgrounds. In this stage, the new product is typically compared to either a 
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placebo or a standard treatment, where the side effects and efficacy are closely observed in the 

comparison. After this phase is completed, if the FDA agrees that the trial results are positive, it 

will approve the experimental drug or device. From there, the drug is then marketed to the 

consumer.  

Phase IV: This phase occurs after the FDA approves the experimental drugs or devices 

for marketing. Known as the post-marketing surveillance phase, the device or drug’s 

effectiveness and safety is then monitored in the general population after the product is marketed 

to collect additional information on the product’s safety and efficacy over an extended period. 

Sometimes, the side effects may not become clear until more people have taken it over a longer 

period.  

1.2. Literature Review 

The use of statistical methods in clinical data has become an increasingly important topic 

through advances in healthcare and technology. In this thesis we present statistical techniques 

from survival analysis and regression analysis for longitudinal data. 

Survival analysis focuses on modeling the distribution of the time until occurrence of an 

event (for example, death or remission) in the presence of censored observations. Observations 

are called censored if the person drops out of the study before occurrence of the event. Survival 

function for times to event (the probability of exceeding certain time) is modeled by a product- 

limit estimator (known commonly as the Kaplan-Meier estimator).  Proposed by Kaplan and 

Meier (1958), this estimator is a step-function with discontinuities at the time of event. The 

Kaplan-Meier estimator, however cannot accommodate the presence of predictor variables.  

To do so, Cox (1972) extended the work of Kaplan and Meier by proposing a regression 

model to fit life table data. His work, widely known in medical statistics as the Cox proportional 
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hazards model, assumes measurements on each individual are collected, and the relation between 

the distribution of time-to-event is modeled through what is known as a hazard function. Within 

the same year of Cox’s publication, a statistician named Nelson (1972) developed the theory of 

hazard plotting. In his paper, the author presents an application to data plotting by modeling 

censored data through the use of a hazard function involving a cumulative distribution function.  

Transitioning away from the field of survival analysis, longitudinal data analysis is 

another technique used in medical data for modeling repeated measures on specific individuals, 

over periods of times, ranging from a few days to even a few years. In their paper, Caruana et al. 

(2015) state that there are generally two types of designs incorporating longitudinal data: the 

standard longitudinal design and the cross-sectional design. The longitudinal design collects data 

repeatedly over time on the same individuals, whereas the cross-sectional design measures 

multiple variables at a single time point without regard to the influence of time on these 

variables. Both the standard longitudinal and cross-sectional designs have distinct advantages. 

An advantage of a standard longitudinal design is that it is useful for evaluating the relationship 

between risk factors causing a disease and the outcomes of a clinical trial treatment observed 

over a period of time. On the other hand, an advantage of using a cross-sectional study is that it 

is quicker to set up which may be useful in performing quicker evaluations.  

It is often noteworthy to know that clinical trials are often very expensive to carry out and 

require lots of optimization. Gupta (2012) noted that there are two statistical methods used in 

evaluation of efficacy of clinical trials: frequentist and Bayesian. Frequentist methods model the 

prior information through the design of the clinical trial, but not the analysis of data. Bayesian, 

on the other hand, provides a mathematical method of calculating the likelihood of future events, 
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given knowledge of past events. In this thesis, we discuss both frequentist and Bayesian analysis 

techniques. 

1.3. A Brief History of Clinical Trials  

 Clinical research has been ever evolving throughout the centuries. The first documented 

clinical trial (non-medical) happened during circa 500 BCE in Babylon. During that time, King 

Nebuchadnezzar (Bhatt 2010) ordered his people to eat meat and drink wine, believing the diet 

would keep them in good shape; however, several citizens objected to his rule by eating 

vegetables instead. Therefore, Nebuchadnezzar experimented by allowing 10 days for the 

objectors to follow a diet of legumes. After 10 days, the king found out that the vegetarians were 

more nourished than the meat-eaters. Thus, the king permitted the vegetarians to continue their 

diet.   

 As time progresses, more advances have been made to clinical trials. A noteworthy 

example was the development of a controlled trial. Discovered by James Lind (Bartholomew, 

2002) in the mid-18th century, a controlled trial is a study design that randomly places 

participants into an experimental group or control group. The difference between the outcome 

variables in the two groups is then investigated. 

After the basic approaches to clinical trials were introduced in the 18th century, the 

efforts were made to refine both the design as well as the statistical aspects. It took another 

century of research before the emergence of a significant milestone in clinical trials, known as 

the placebo. First introduced in the early 1800s, the placebo was referred to as “an epithet given 

to any medicine more to please than benefit the patient” (Shapiro 1964, p. 52). Putting this quote 

into layman’s terms, the placebo is used in clinical research as a “dummy drug” to instill 
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confidence within a patient, making them believe that the treatment might work. The effects of 

placebos are then compared to an active treatment to establish validity.  

As scientific advances continued to occur in clinical trials, new ethical and regulatory 

challenges emerged. The ethical framework for human experimentation dates back to the ancient 

Hippocratic Oath, which mentions that the primary duty of a physician is to avoid harming the 

patient; this oath, however, it was violated many times in past human experimentations (such as 

Nazi human experimentations during World War II). To solve this issue, several laws and 

regulations were created in the mid-20th century. The first was the Nuremberg Code of 1947 

which stressed voluntary consent in clinical trials. Another notable one was the Helsinki 

Declaration created in 1964. Widely regarded as the cornerstone document on human research 

ethics, the Helsinki Declaration established regulatory guidelines outlining the general principals 

in clinical trials as well as the rights, risks, and privacy of using humans in medical research 

(Bhatt, 2010).   

Today clinical trials have been heavily regulated by the government as a response to 

ethical guidelines. Founded in 1862, the FDA has evolved as one of the world’s foremost 

institutional authorities for conducting and evaluating controlled clinical drug trials (Davies and 

Kermani 2008).  For a new drug to be marketed, the FDA requires that at least two adequate and 

well-controlled clinical trials be conducted to provide substantial evidence regarding the efficacy 

of the drug product under investigation (Davies and Kermani 2008).  

1.4. Aims and Objectives for Thesis 

In this thesis, we explore properties of clinical data using various statistical methods. All 

datasets and scenarios are simulated except for the publicly available Primary Biliary Cirrhosis 

dataset which we will analyze in Chapter 2.  Understanding these techniques is not only 
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necessary for clinical trials, but other related fields such as epidemiology. Below we summarize 

to topics that this thesis explores.  

Chapter 2 is devoted to survival analysis methodology. In the field of survival analysis, 

we estimate the distribution of time until an adverse event and compare the distributions in two 

or more distinct groups using the Kaplan-Meier estimator of the survival function and log-rank 

test. Furthermore, we dive deeper into investigating how certain factors can influence the rate of 

a particular event happening (such as infection or death) through the use of the Cox proportional 

hazards model.  

In medical data, most measurements are collected through a longitudinal study, meaning 

repeated observations of the same variables in the same individuals are collected through periods 

of time. Chapter 3 presents regression models for longitudinal data from different settings where 

the response variables have normal, gamma, binary, and Poisson distributions. 

In Chapter 4 we discuss interim data monitoring in clinical trials. With a standard 

approach, clinical trials continue until the pre-determined number of patients has been accrued 

and followed for a certain period of time. The required number of patients is determined based 

on an acceptable power of the statistical test of superiority of the product under investigation. 

However, if researchers have a strong belief in superiority of the tested product, they might 

conduct a sequential testing that allows stopping a trial earlier if the data show enough evidence. 

Chapter 4 explores the concept of interim data monitoring where both the classical group 

sequential testing procedure and Bayesian sequential procedure are discussed and illustrated with 

several clinical trial examples.   
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CHAPTER 2 

SURVIVAL ANALYSIS 

2.1. Theoretical Framework 

2.1.1 The Survival, Hazard, and Cumulative Hazard Functions 

Let T denote the survival time of an individual. Assume that 𝑇 is a random variable with 

the probability density function 𝑓(𝑥) . The density function 𝑓(𝑥) along with the cumulative 

distribution function 𝐹(𝑥) = ∫ 𝑓(𝑢)𝑑𝑢
𝑥

0
 does not provide much information about the 

individual’s chance of survival past a fixed time 𝑡. Therefore, the survival, hazard, and 

cumulative hazard functions are used instead. 

 The survival function is given as 𝑆(𝑡) = 1 − 𝐹(𝑡) = 𝑃(𝑇 > 𝑡). Therefore  𝑆(𝑡) is the 

probability of survival past time 𝑡. The relation between 𝑓(𝑡) and 𝑆(𝑡) is derived as 𝑓(𝑡) =

𝐹′(𝑡) = (1 − 𝑆(𝑡))
′
= −𝑆′(𝑡). 

 The hazard function is defined as the instantaneous rate of failure, given that the 

individual has survived past time 𝑡. The expressions that connect the hazard function with 

𝑓(𝑡), 𝐹(𝑡), and 𝑆(𝑡) are obtained as follows:   

 ℎ(𝑡) = 𝑙𝑖𝑚
𝛿𝑡→0

𝑃(𝑡<𝑇≤𝑡+𝛿𝑡 | 𝑇>𝑡)

𝛿𝑡
= 𝑙𝑖𝑚
𝛿𝑡→0

𝑃(𝑡<𝑇≤𝑡+𝛿𝑡)

𝛿𝑡𝑃(𝑇>𝑡)
= 

1

𝑆(𝑡)
𝑙𝑖𝑚
𝛿𝑡→0

𝐹(𝑡+𝛿𝑡)−𝐹(𝑡)

𝛿𝑡
=
𝑓(𝑡)

𝑆(𝑡)
= −

𝑆′(𝑡)

𝑆(𝑡)
=

−(ln 𝑆(𝑡))′.    

In addition to the hazard function, it is sometimes convenient to operate with the 

cumulative hazard function defined as  𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢 = −∫
𝑑 ln 𝑆(𝑢)

𝑑𝑢
𝑑𝑢 =

𝑡

0

𝑡

0

−∫ 𝑑 ln 𝑆(𝑢) =
𝑡

0
− ln 𝑆(𝑡) + ln 𝑆(0) = − ln 𝑆(𝑡) since 𝑆(0) = 1 and ln(1) = 0. 
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2.1.2. The Kaplan-Meier Estimator 

The Kaplan-Meier estimator, also known as the product-limit estimator, is a 

nonparametric method widely used to estimate the survival function from lifetime data. The 

specificity of the Kaplan-Meier estimator is that it can accommodate censored observations. If 

for an individual the lifetime data are not observed until an event but rather until the individual 

drops out of the study, the lifetime observation is referred to as right-censored. It is known that 

the individual hasn’t experienced an event up to certain time, and nothing can be said about 

survival of the individual past that time.  In terms of medical applications, the Kaplan-Meier 

estimator is used to estimate the survival curve of every patient that is followed until death or 

censoring.  

 The estimator of the survival function 𝑆(𝑡), the probability that life is longer than 𝑡, is 

given by �̂�(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑖:𝑡𝑖≤𝑡
 where 𝑡𝑖 is the time of the 𝑖th event occurring, 𝑑𝑖 is the number 

of individuals experiencing the event at time 𝑡𝑖,  and 𝑛𝑖 is the number of individuals who have 

survived up until just before time  𝑡𝑖. These individuals are termed “at risk” at time 𝑡𝑖 . This 

expression is nothing more than the maximum likelihood estimator derived as follows: 

Let 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘 denote the 𝑘 distinct event times. Let 𝜋𝑖 =

𝑃(𝑇 > 𝑡𝑖  | 𝑇 > 𝑡𝑖−1), 𝑖 = 1, … , 𝑘, be the conditional probabilities that an individual survives past 

time 𝑡𝑖 , given that the individual has survived past time 𝑡𝑖−1. The survival function 𝑆(𝑡) at time 

𝑡𝑗  is the product of 𝜋𝑖’s; that is, 𝑆(𝑡𝑗) = ∏ 𝜋𝑖
𝑗
𝑖=1 . The probabilities 𝜋𝑖 can be estimated by the 

method of maximum likelihood. Each of the 𝑑𝑖 individuals who experience an event at time 

𝑡𝑖 contributes a 1 − 𝜋𝑖 term to the likelihood function, whereas each of the 𝑛𝑖 − 𝑑𝑖 individuals 

who survive past time 𝑡𝑖 contributes a 𝜋𝑖 term to the likelihood function. Consequently, the 



 

10 
 

likelihood function has the form  𝐿 = ∏ (1 − 𝜋𝑖)
𝑑𝑖𝜋𝑖

𝑛𝑖−𝑑𝑖𝑘
𝑖=1 . The log-likelihood function 

becomes ln 𝐿 = ∑ 𝑑𝑖 ln(1 − 𝜋𝑖)
𝑘
𝑖=1 + ∑ (𝑛𝑖 − 𝑑𝑖) ln 𝜋𝑖

𝑘
𝑖=1 . Differentiating with respect to 𝜋𝑖 and 

setting the derivative to zero, we see that the estimators �̂�𝑖’s solve 
𝑑 ln 𝐿

𝑑𝜋𝑖
|𝜋𝑖=�̂�𝑖 = 0 = −

𝑑𝑖

1−�̂�𝑖
−

𝑛𝑖−𝑑𝑖

�̂�𝑖
 . From here, �̂�𝑖 = 1 −

𝑑𝑖

𝑛𝑖
 and �̂�(𝑡𝑗) = ∏ (1 −

𝑑𝑖

𝑛𝑖
)

𝑗
𝑖=1 . Now take any 𝑡. Since 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1 

for some 𝑗 = 0,… , 𝑘,  and there are no events in the open interval (𝑡𝑗 , 𝑡𝑗+1), we have that 𝑆(𝑡) =

𝑆(𝑡𝑗) and the result follows.  

To find the variance of the Kaplan-Meier estimator, we note that 𝑑𝑖
′𝑠 can be assumed to 

follow a binomial distribution with parameters 𝑛𝑖 and probability of event 𝜋𝑖 where we estimate 

�̂�𝑖 =
𝑑𝑖

𝑛𝑖
.  We can approximate 𝑉𝑎�̂�(�̂�𝑖) ≈

�̂�𝑖 (1−�̂�𝑖 )

𝑛𝑖
.  Further, consider  ln[�̂�(𝑡𝑗)] =

∑ ln (1 − �̂�𝑖)
𝑗
𝑖=1 .  Now we will apply the delta method that states that if {𝑋𝑛, 𝑛 ≥ 1} is a 

sequence of random variables such that √𝑛(𝑋𝑛 − 𝜃)
𝑛→∞
→   𝑁(0, 𝜎2),  in distribution, and there 

exists a function 𝑔(𝑥) that is differentiable at 𝜃 where 𝑔′(𝜃) ≠ 0, then 

 √𝑛(𝑔(𝑋𝑛) − 𝑔(𝜃))
𝑛→∞
→   𝑁 (0, 𝜎2(𝑔′(𝜃))

2
).  By the delta method and the approximate 

independence of the �̂�𝑖′𝑠, 

𝑉𝑎�̂�(ln[ �̂�(𝑡𝑗)]) =∑𝑉𝑎�̂�[ln(1 − �̂�𝑖)]

𝑗

𝑖=1

=∑(
1

1 − �̂�𝑖
)
2

𝑉𝑎�̂�(�̂�𝑖) =

𝑗

𝑖=1

∑(
1

1 − �̂�𝑖
)
2 �̂�𝑖 (1 − �̂�𝑖 )

𝑛𝑖

𝑗

𝑖=1

 

=∑
�̂�𝑖

(1 − �̂�𝑖)𝑛𝑖
=

𝑗

𝑖=1

∑

𝑑𝑖
𝑛𝑖

(1 −
𝑑𝑖
𝑛𝑖
) 𝑛𝑖

=

𝑗

𝑖=1

∑
𝑑𝑖

(𝑛𝑖 − 𝑑𝑖)𝑛𝑖

𝑗

𝑖=1

 . 
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Finally, recalling that for 𝑡, 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1, 𝑆(𝑡) = 𝑆(𝑡𝑗), and writing �̂�(𝑡) = 𝑒ln (�̂�(𝑡)) =

𝑒ln (�̂�(𝑡𝑗)), we use the delta method again to obtain the Greenwood’s formula for variance  

𝑉𝑎�̂� (�̂�(𝑡)) = 𝑉𝑎�̂� (�̂�(𝑡𝑗)) = [�̂�(𝑡𝑗)]
2
𝑉𝑎�̂�[ln(�̂�(𝑡𝑗))] = [�̂�(𝑡)]

2
∑

𝑑𝑖

(𝑛𝑖−𝑑𝑖)𝑛𝑖
.𝑖:𝑡𝑖≤𝑡
 

2.1.3. Kaplan-Meier Survival Curve 

 The Kaplan-Meier survival curve is the plot of the Kaplan-Meier estimator of the survival 

function �̂�(𝑡) against time 𝑡. �̂�(𝑡) is represented as a step function that decreases at the times of 

events, and remains constant between two observed event times. Traditionally, event times for 

censored observations are denoted by an “x”, and if an observation happens to be censored at an 

event time, the “x” is placed at the bottom of the step.   

2.1.4. The Nelson-Aalen Estimator  

 The Nelson-Aalen estimator is a nonparametric estimator of the cumulative hazard rate 

function from censored event data. Let 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 represent the times of events, 𝑑𝑖 be the 

number of observed events at time 𝑡𝑖, and 𝑛𝑖 be the number of subjects at risk. The Nelson-Aalen 

estimator for the cumulative hazard rate is given by  �̃�(𝑡) = Σ𝑡𝑖≤𝑡
𝑑𝑖

𝑛𝑖
 .  

To derive this estimator, consider the relation 𝑆(𝑡) = exp (−𝐻(𝑡)) and the Kaplan-Meier 

estimator �̂�(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑖: 𝑡𝑖≤𝑡
 as an estimator of  𝑆(𝑡). If 𝑑𝑖 ≪ 𝑛𝑖, then  ln (1 −

𝑑𝑖

𝑛𝑖
) ≈ −

𝑑𝑖

𝑛𝑖
,  

and therefore,  𝐻(𝑡) = − ln (�̂�(𝑡)) = −𝑙𝑛∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑖: 𝑡𝑖≤𝑡 = −∑ ln (1 −

𝑑𝑖

𝑛𝑖
)𝑖: 𝑡𝑖≤𝑡 ≈ ∑

𝑑𝑖

𝑛𝑖
𝑖: 𝑡𝑖≤𝑡  . Note that 

from here, the Nelson-Aalen estimator of the survival function has the form  �̃�(𝑡) =

exp (−∑
𝑑𝑖

𝑛𝑖
𝑡𝑖≤𝑡

). The variance of �̃�(𝑡) can be approximated by 𝑉𝑎�̂�[− ln(�̂�(𝑡))] =

 𝑉𝑎�̂�[ln(�̂�(𝑡𝑗))] = ∑
𝑑𝑖

(𝑛𝑖−𝑑𝑖)𝑛𝑖

𝑗
𝑖=1  ,   which we obtained above on our way to the Greenwood’s 

formula. 
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2.1.5. The Log-Rank Test 

 The log-rank test is a test of hypotheses that compares survival functions as functions of 

time for two categories, for example, survival functions for men vs. women or for intervention 

group vs. control group. The objective is to test 𝐻0: 𝑆1(𝑡) = 𝑆2(𝑡) for all  𝑡 ≥ 0 against 

𝐻1: 𝑆1(𝑡) ≠ 𝑆2(𝑡) for some  𝑡 ≥ 0. Below we derive the expression for the chi-squared test 

statistic. Let 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘 denote the event times, and let 𝑑1𝑖 and 𝑑2𝑖 be the number of 

individuals who experience the event at time 𝑡𝑖 in categories 1 and 2, respectively. Also denote 

by 𝑛1𝑖 and 𝑛2𝑖 the number of individuals at risk at time 𝑡𝑖 in categories 1 and 2, respectively. We 

have that  𝑑1𝑖 + 𝑑2𝑖 = 𝑑𝑖, the total number of individuals who experienced the event at time 𝑡𝑖, 

and  𝑛1𝑖 + 𝑛2𝑖 = 𝑛𝑖, the total number of at-risk individuals at time 𝑡𝑖.  Under the null hypothesis, 

𝑑1𝑖 has a hypergeometric distribution with mean 𝐸(𝑑1𝑖) =
𝑛1𝑖 𝑑𝑖

𝑛𝑖
 and variance 𝑉𝑎𝑟(𝑑1𝑖) =

𝑛1𝑖𝑛2𝑖(𝑛𝑖−𝑑𝑖)𝑑𝑖

𝑛𝑖
2(𝑛𝑖−1)

 , 𝑖 = 1,… , 𝑘. The test statistic is defined as 𝜒2 = (
𝑈

√𝑉𝑎𝑟(𝑈)
)
2

 where 

𝑈 = ∑ (𝑑1𝑖 − 𝐸(𝑑1𝑖))
𝑘
𝑖=1  and 𝑉𝑎𝑟(𝑈) = ∑

𝑛1𝑖𝑛2𝑖(𝑛𝑖−𝑑𝑖)𝑑𝑖

𝑛𝑖
2(𝑛𝑖−1)

𝑘
𝑖=1 . Under the null hypothesis, the test 

statistic has a 𝜒2-distribution with one degree of freedom. 

2.1.6. Parametric Estimation of Survival Function 

2.1.6.1. Definition 

 The survival function 𝑆(𝑡) is estimated by a parametric method if an explicit algebraic 

expression is for this function is assumed known and the parameters are estimated from the data. 

For example, the survival function for a Weibull distribution is widely implemented. A Weibull 

distribution has the density 𝑓(𝑡) = 𝛼𝜆𝑡𝛼−1𝑒−𝜆𝑡
𝛼
 for 𝑡 ≥ 0 and 𝛼, 𝜆 > 0, which for 𝛼 = 1 

reduces to an exponential distribution with the density 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡, 𝜆 > 0, 𝑡 ≥ 0. The estimator 
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for the survival function of a Weibull distribution is �̂�(𝑡) = 𝑒−𝜆𝑡
𝛼
, 𝑡 ≥ 0, which reduces to an 

exponential survival function �̂�(𝑡) = 𝑒−𝜆𝑡, 𝑡 ≥ 0, when 𝛼 = 1. 

 The parameters are estimated by the method of maximum likelihood. However, since 

censored data are present, they have to be taken into consideration when deriving the likelihood 

function.  

2.1.6.2. Random Censoring Model 

A random censoring model assumes that times to event and censoring times are 

independent. Denote by 𝑇𝑖 the time to event of the 𝑖th subject, and let 𝐶𝑖 be the censoring time of 

the 𝑖th subject. We assume that 𝑇𝑖 has pdf 𝑓𝑖(𝑡) and cdf 𝐹𝑖(𝑡), and 𝐶𝑖 has pdf 𝑔𝑖(𝑡) and cdf 𝐺𝑖(𝑡). 

The subjects for which an event occurs (termed uncensored), the time to event is smaller than the 

censoring time, that is, 𝑇𝑖 < 𝐶𝑖, while for censored observations,  𝐶𝑖 < 𝑇𝑖 .  

Thus, the contribution to the likelihood function of an uncensored 𝑖th subject with the 

observed event time 𝑡𝑖  is  lim𝑑𝑡→0𝑃(𝑇𝑖 ∈ (𝑡𝑖, 𝑡𝑖 + 𝑑𝑡), 𝐶𝑖 > 𝑡𝑖)/𝑑𝑡 = 𝑓𝑖(𝑡)(1 − 𝐺𝑖(𝑡)), and the 

contribution of the 𝑖th subject censored at time 𝑡𝑖 is lim𝑑𝑡→0𝑃(𝐶𝑖 ∈ (𝑡𝑖, 𝑡𝑖 + 𝑑𝑡), 𝑇𝑖 > 𝑡𝑖)/𝑑𝑡 =

𝑔𝑖(𝑡)(1 − 𝐹𝑖(𝑡)). Let 𝛿𝑖 = 1 if the ith observation is uncensored and 0, otherwise.  Therefore, the 

likelihood function for the survival with random censoring is:  

𝐿 =∏[𝑓𝑖(𝑡𝑖)(1 − 𝐺(𝑡𝑖))]
𝛿𝑖

𝑛

𝑖=1

[(1 − 𝐹𝑖(𝑡𝑖))𝑔𝑖(𝑡𝑖)]
1−𝛿𝑖 

= ∏ (1 − 𝐺(𝑡𝑖))
𝛿𝑖𝑛

𝑖=1 (𝑔(𝑡𝑖))
1−𝛿𝑖∏ 𝑓𝑖(𝑡𝑖)

𝛿𝑖𝑛
𝑖=1 (1 − 𝐹𝑖(𝑡𝑖))

1−𝛿𝑖
 

      ∝ ∏ 𝑓𝑖(𝑡𝑖)
𝛿𝑖𝑛

𝑖=1 (1 − 𝐹𝑖(𝑡𝑖))
1−𝛿𝑖

.                                  

The log-likelihood function is proportional to  

                                         ln 𝐿 ∝  ∑ 𝛿𝑖 ln 𝑓𝑖(𝑡𝑖)
𝑛
𝑖=1 + ∑ (1 − 𝛿𝑖) ln(1 − 𝐹𝑖(𝑡𝑖))

𝑛
𝑖=1 . 
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By maximizing this function, we find the parameters of the cdf 𝐹 and estimate the survival 

function as �̂�(𝑡) = 1 − �̂�(𝑡), 𝑡 ≥ 0. 

2.1.6.3. The Weibull Distribution Model 

Suppose the time to event 𝑇𝑖 has a Weibull distribution with pdf 𝑓(𝑡) =

𝛼𝜆𝑡𝛼−1𝑒−𝜆𝑡
𝛼
, 𝛼, 𝜆 > 0, 𝑡 ≥ 0, and cdf 𝐹(𝑡) = 𝑒−𝜆𝑡

𝛼
, 𝛼, 𝜆 > 0, 𝑡 ≥ 0. We estimate the parameters 

𝛼 and 𝜆 by the method of maximum likelihood. The log-likelihood function is proportional to  

ln 𝐿(𝛼, 𝜆) ∝   ∑𝛿𝑖 ln 𝑓𝑖(𝑡𝑖)

𝑛

𝑖=1

+∑(1 − 𝛿𝑖) ln(1 − 𝐹𝑖(𝑡𝑖))

𝑛

𝑖=1

 

=∑𝛿𝑖 ln(𝛼𝜆𝑡𝑖
𝛼−1𝑒−𝜆𝑡𝑖

𝛼
)

𝑛

𝑖=1

+∑(1 − 𝛿𝑖) ln(𝑒
−𝜆𝑡𝑖

𝛼
)

𝑛

𝑖=1

 

= ln 𝛼∑𝛿𝑖

𝑛

𝑖=1

+ ln 𝜆∑𝛿𝑖

𝑛

𝑖=1

+ (𝛼 − 1)∑𝛿𝑖 ln 𝑡𝑖

𝑛

𝑖=1

− 𝜆∑𝛿𝑖𝑡𝑖
𝛼

𝑛

𝑖=1

 − 𝜆∑(1 − 𝛿𝑖)𝑡𝑖
𝛼

𝑛

𝑖=1

 

∝ ln𝛼∑𝛿𝑖

𝑛

𝑖=1

+ ln 𝜆∑𝛿𝑖

𝑛

𝑖=1

+ 𝛼∑𝛿𝑖 ln 𝑡𝑖

𝑛

𝑖=1

 − 𝜆∑𝑡𝑖
𝛼

𝑛

𝑖=1

. 

Thus, the maximum-likelihood estimators �̂� and �̂� are numeric solutions to the system of normal 

equations 

{
 
 

 
 𝜕 ln 𝐿(�̂�, �̂�)

𝜕�̂�
= 0 =

∑ 𝛿𝑖
𝑛
𝑖=1

�̂�
+∑𝛿𝑖 ln 𝑡𝑖

𝑛

𝑖=1

− �̂�∑𝑡𝑖
�̂� ln 𝑡𝑖

𝑛

𝑖=1

 ,

𝜕 ln 𝐿(�̂�, �̂�)

𝜕�̂�
= 0 =

∑ 𝛿𝑖
𝑛
𝑖=1

�̂�
−∑𝑡𝑖

�̂�

𝑛

𝑖=1

 .

 

The estimated survival function has the form �̂�(𝑡) = 𝑒−�̂�𝑡
�̂�
, 𝑡 ≥ 0. 
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2.1.7. The Weibull Regression Model 

The Weibull regression model estimates the survival function as �̂�(𝑡) = 𝑒−�̂�𝑡
�̂�
, 𝑡 ≥ 0, 

where �̂� = 𝑒−(�̂�0+�̂�1𝑥1+⋯+�̂�𝑘𝑥𝑘)/�̂� and �̂� = 1/�̂�. The maximum-likelihood estimates �̂�, �̂�0, … , �̂�𝑘 

are the numeric solutions of the normal equations where the log-likelihood function f has the 

form: 

ln 𝐿(𝛽0, … , 𝛽𝑘, 𝜎) ∝   − ln 𝜎∑𝛿𝑖

𝑛

𝑖=1

−
1

𝜎
∑[𝛿𝑖(𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑘𝑥𝑖𝑘)] + (

1

𝜎
− 1)

𝑛

𝑖=1

∑𝛿𝑖 ln 𝑡𝑖

𝑛

𝑖=1

 

−∑ exp [
1

𝜎
(ln 𝑡𝑖 − (𝛽0 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑘𝑥𝑖𝑘))]

𝑛
𝑖=1 .  

To check goodness of fit of the fitted model, the deviance test is employed. The test 

statistic, called the deviance, is computed as 

𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = −2(ln 𝐿(𝑛𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙) − ln 𝐿(𝑓𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)) 

where the fitted model is the full model with 𝑘 + 1 regression coefficients and the scale 

parameter 𝜎. The null model is the intercept-only model with 𝛽0 and 𝜎 as parameters. 

Under 𝐻0, the test statistic follows a 𝜒2- distribution with the number of degrees of 

freedom calculated as the difference between the number of parameters in the two models; that 

is, the number of degrees of freedom is 𝑘 + 2 − 2 = 𝑘, the same as the number of predictors in 

the fitted model. 

2.1.8 The Cox Proportional Hazards Model 

The Cox proportional hazards model is customarily defined in terms of the hazard 

function. It is written as  ℎ(𝑡, 𝑥1, … , 𝑥𝑘, 𝛽1, … , 𝛽𝑘) = ℎ0(𝑡) exp(𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘) where ℎ0(𝑡) 

is called the baseline hazard function. It represents the hazard function when all the predictors 

are equal to zero, which corresponds to an often-hypothetical individual called a baseline 
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individual. The quantity exp (𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘) is referred to as the relative risk of an 

individual with predictors 𝑥1, … , 𝑥𝑘 . The term “proportional hazards” symbolizes the fact that in 

this model, the ratio of the hazard functions for two individuals with relative risks exp (𝛽1𝑥11 +

⋯+ 𝛽𝑘𝑥1𝑘) and exp (𝛽1𝑥21 +⋯+ 𝛽𝑘𝑥2𝑘) is a constant, not depending on time: 

ℎ(𝑡,𝑥11,…,𝑥1𝑘,𝛽1,…,𝛽𝑘) 

ℎ(𝑡,𝑥21,…,𝑥2𝑘,𝛽1,…,𝛽𝑘) 
=
ℎ0(𝑡)exp (𝛽1𝑥11+⋯+𝛽𝑘𝑥1𝑘)

ℎ0(𝑡)exp (𝛽1𝑥21+⋯+𝛽𝑘𝑥2𝑘)
=
exp (𝛽1𝑥11+⋯+𝛽𝑘𝑥1𝑘)

exp (𝛽1𝑥21+⋯+𝛽𝑘𝑥2𝑘)
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Alternatively, the Cox proportional hazards model can be formulated in terms of the 

survival function. To derive the alternative definition, we note that  

𝑆(𝑡) = exp(−∫ ℎ(𝑢|𝑥1, 𝑥2, … , 𝑥𝑘, 𝛽1, … , 𝛽𝑘)𝑑𝑢
𝑡

0

) 

= exp (−∫ ℎ0(𝑢) exp(𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘) 𝑑𝑢
𝑡

0

) = [𝑆0(𝑡)]
𝑟 

where 𝑟 = exp(𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘) is the relative risk, and 𝑆0(𝑡) = 𝑒
−∫ ℎ0(𝑢)𝑑𝑢

𝑡
0  is the baseline 

survival function for the baseline individual.  

 The regression coefficients 𝛽1, … , 𝛽𝑘 can be estimated by maximizing the partial-

likelihood function, which is defined as the portion of the likelihood function in the random 

censoring model (see Section 2.1.6.2) that does not depend on time 𝑡. To derive the expression 

for the partial-likelihood function, we proceed as follows. We start with the multiplicative factor 

of the likelihood function that depends only on the distribution of the time-to-event: 

𝐿 = ∏ 𝑓𝑖(𝑡𝑖)
𝛿𝑖𝑛

𝑖=1 (1 − 𝐹𝑖(𝑡𝑖))
1−𝛿𝑖

. 

Next, we let the time-to-event distribution for the 𝑖th subject have the survival function 

𝑆𝑖(𝑡), and hazard function ℎ𝑖(𝑡𝑖) = ℎ0(𝑡𝑖) exp(𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘) , 𝑖 = 1… . , 𝑛. Using the 

expression 𝑓𝑖(𝑡𝑖) = ℎ𝑖(𝑡𝑖)𝑆𝑖(𝑡𝑖), we obtain 



 

17 
 

𝐿 =∏𝑓𝑖(𝑡𝑖)
𝛿𝑖

𝑛

𝑖=1

(𝑆𝑖(𝑡𝑖))
1−𝛿𝑖

=∏(ℎ𝑖(𝑡𝑖)𝑆𝑖(𝑡𝑖))
𝛿𝑖

𝑛

𝑖=1

(𝑆𝑖(𝑡𝑖))
1−𝛿𝑖

 

=∏(ℎ𝑖(𝑡𝑖))
𝛿𝑖

𝑛

𝑖=1

𝑆𝑖(𝑡𝑖) =∏(
ℎ𝑖(𝑡𝑖)

∑ ℎ𝑗(𝑡𝑖)𝑗∈𝑅(𝑡𝑖)
)

𝛿𝑖𝑛

𝑖=1

( ∑ ℎ𝑗(𝑡𝑖)

𝑗∈𝑅(𝑡𝑖)

)

𝛿𝑖

𝑆𝑖(𝑡𝑖) 

=∏(
𝑒𝛽1𝑥𝑖1+⋯+𝛽𝑘𝑥𝑖𝑘

∑ e𝛽1𝑥𝑗1+⋯+𝛽𝑘𝑥𝑗𝑘𝑗∈𝑅(𝑡𝑖)

)

𝛿𝑖𝑛

𝑖=1

∙∏( ∑ ℎ𝑗(𝑡𝑖)

𝑗∈𝑅(𝑡𝑖)

)

𝛿𝑖

𝑆𝑖(𝑡𝑖) .

𝑛

𝑖=1

 

Here 𝑅𝑖 represents the relative-risk set at time 𝑡𝑖.  Now, we discard the portion that depends on 

times 𝑡𝑖, 𝑖 = 1,… , 𝑛, and define the partial-likelihood function as 

𝐿𝑝(𝛽1, … , 𝛽𝑛) =∏(
𝑒𝛽1𝑥𝑖1+⋯+𝛽𝑘𝑥𝑖𝑘

∑ e𝛽1𝑥𝑗1+⋯+𝛽𝑘𝑥𝑗𝑘𝑗∈𝑅(𝑡𝑖)

)

𝛿𝑖𝑛

𝑖=1

. 

Next, the estimators of 𝛽1, … . , 𝛽𝑘 are obtained by maximizing the log-partial-likelihood function 

ln 𝐿𝑝(𝛽1, … , 𝛽𝑘) =∑𝛿𝑖(𝛽1𝑥𝑖1 +⋯+ 𝛽𝑘𝑥𝑖𝑘) −

𝑛

𝑖=1

∑𝛿𝑖 ln ( ∑ e𝛽1𝑥𝑗1+⋯+𝛽𝑘𝑥𝑗𝑘

𝑗∈𝑅(𝑡𝑖)

) .

𝑛

𝑖=1

 

The estimates �̂�1, … , �̂�𝑘 are numerical solutions of the partial-likelihood score equations  

𝜕 ln 𝐿𝑝(�̂�1, … , �̂�𝑘)

𝜕𝛽𝑚
=∑ 𝛿𝑖𝑥𝑖𝑚

𝑛

𝑖=1
−∑ 𝛿𝑖

𝑛

𝑖=1

∑ 𝑥𝑗𝑚𝑒
(�̂�1𝑥𝑗1+⋯+�̂�𝑘𝑥𝑗𝑘)

𝑗∈𝑅(𝑡𝑖)

∑ 𝑒(�̂�1𝑥𝑗1+⋯+�̂�𝑘𝑥𝑗𝑘)𝑗∈𝑅(𝑡𝑖)

= 0, 𝑚 = 1,… , 𝑘. 

The estimates of the regression coefficients �̂�1, … , �̂�𝑘 for the Cox proportional hazards 

model yield the following interpretation. For a numeric predictor, say, 𝑥1, the percent change in 

the estimated hazard function when 𝑥1is increased by one unit is equal to 

ℎ̂(𝑡, 𝑥1 + 1, 𝑥2, … , 𝑥𝑘, �̂�1, �̂�2, … , �̂�𝑘) − ℎ̂(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑘, �̂�1, �̂�2, … , �̂�𝑘) 

ℎ̂(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑘, �̂�1, �̂�2, … , �̂�𝑘)
∙ 100% 

= (
ℎ̂0(𝑡) exp(�̂�1(𝑥1 + 1) + �̂�2𝑥2 +⋯+ �̂�𝑘𝑥𝑘)

ℎ̂0(𝑡) exp(�̂�1𝑥1 + �̂�2𝑥2 +⋯+ �̂�𝑘𝑥𝑘)
− 1) ∙ 100% = (𝑒�̂�1 − 1) ∙ 100%. 
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If 𝑥1 is a 0-1 predictor, the percent ratio of the estimated hazard functions for 𝑥1 = 1 and 𝑥1 =

0 is equal to 

ℎ̂(𝑡, 1, 𝑥2, … , 𝑥𝑘 , �̂�1, �̂�2, … , �̂�𝑘) 

ℎ̂(𝑡, 0, 𝑥2, … , 𝑥𝑘 , �̂�1, �̂�2, … , �̂�𝑘)
∙ 100% =

ℎ̂0(𝑡) exp(�̂�1 ∙ 1 + �̂�2𝑥2 +⋯+ �̂�𝑘𝑥𝑘)

ℎ̂0(𝑡) exp(�̂�1 ∙ 0 + �̂�2𝑥2 +⋯+ �̂�𝑘𝑥𝑘)
∙ 100%

= 𝑒�̂�1 ∙ 100%. 

Remark: A noteworthy parametric model, sharing characteristics of the Cox proportional 

hazards model, is the Weibull regression (see Section 2.1.7) that models the survival function as 

𝑆(𝑡) = 𝑒−𝜆𝑡
𝛼
,  𝑡 ≥ 0, where 𝜆 = 𝑒−(𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘)/𝜎 and 𝛼 = 1/𝜎.  To give interpretation of 

the estimated regression coefficients, we note that the hazard function of the Weibull distribution 

is of the form  ℎ(𝑡) = −
𝑆′(𝑡)

𝑆(𝑡)
= 𝛼𝜆𝑡𝛼−1 = ℎ0(𝑡) exp{𝛽1

∗𝑥1 +⋯+ 𝛽𝑘
∗𝑥𝑘} where ℎ0(𝑡) =

1

𝜎
𝑒−

𝛽𝑜
𝜎 𝑡

1

𝜎
−1, and 𝛽𝑖

∗ = −
𝛽𝑖

𝜎
, 𝑖 = 1,… , 𝑘. This shows that the Weibull regression is a special case 

of the Cox proportional hazards model, and �̂�𝑖
∗ = −

�̂�𝑖

�̂�
 , 𝑖 = 1,… , 𝑘, are interpreted as in the Cox 

model, in terms of estimated percent change (or percent ratio) of the hazard function. 

2.2 Application of the Survival Analysis 

2.2.1. Data Description 

The Primary Biliary Cirrhosis dataset presents a clinical trial of a liver disease conducted 

between the years 1974 and 1984. This dataset was obtained publicly through kaggle.com. The 

goal of this study was to determine the effectiveness of a placebo drug, known as Penicillamine, 

on the survival of the patients. The study originally consisted of a total of 424 patients; however, 

112 cases did not participate in the clinical trial. Therefore, the patients not participating were 

omitted from the dataset, reducing the dataset size down to 312 patients. The table below (see 

Table 1) lists all the variables used in the analysis, along with their attributes.  
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TABLE 1. Description of the Variables in the Primary Biliary Cirrhosis Dataset 

Name Description Type Values 

time 
The number of days between registration 

and event 
Numeric 

Ranges from 41 to 

4795 days until event 

status Status of patient 
Categorical 

Numeric 

0=Alive and doesn’t 

need liver transplant 

1=Alive but needs 

liver transplant 

2=Dead (i.e., censored) 

trt Type of drug that patient received 
Binary 

categorical 

1=D-Penicillamine 

2=Placebo 

age Age of patients in years Numeric 
Ranges from 26 to 78 

years old 

sex Sex of patient 
Binary 

categorical 
0=Female, 1=Male 

ascites 

Presence of ascites, the accumulation of 

fluid in the peritoneal cavity 

Binary 

categorical 

0=No 

1=Yes 

hepato 
Abnormal enlargement of the liver not 

related to the underlying disease. 

Binary 

categorical 

0=No 

1=Yes 

spiders 
Blood vessel malformations in the skin Binary 

categorical 

0=No 

1=Yes 

edema 

Swelling caused by excess fluid trapped 

in the body’s tissues 

Numeric 

categorical 

0=No edema present, 

therefore no diuretic 

therapy is needed 

0.5=Edema is present 

without diuretics 

1=Edema is present 

despite diuretic 

therapy 

bilirubin 

Amount of Bilirubin, a yellowish 

pigment made from the breakdown of red 

blood cells, in milligrams per deciliter of 

blood (mg/dl) 

Numeric Ranges between 

0.3mg/dl to 28mg/dl 

cholesterol 

Amount of cholesterol, in milligrams per 

deciliter of blood (mg/dl) 

Numeric Ranges between 

120mg/dl to 

1,775mg/dl  

albumin 

Amount of albumin, a protein made by 

the liver to prevent blood fluids from 

leaking into other tissues, in milligrams 

per deciliter of blood (mg/dl) 

Numeric Ranges between 

1.96mg/dl to 

4.64mg/dl 
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TABLE 1. Continued  

Name Description Type Values 

copper 
Amount of copper (in micrograms per 

day, 𝜇g/day)  

Numeric Ranges between 

4𝜇g/day to 588 𝜇g/day 

alk.phos 

Alkaline phosphate concentration in 

U/Liter 

Numeric Ranges between 

289U/Liter to 

13,862U/Liter 

ast 

Aspartate aminotransferase (AST) 

concentration in U/ml 

Numeric Ranges between 

26.35U/ml to 

457.25U/ml 

trig 
Triglyceride concentration in mg/dl Numeric Ranges between 

33mg/dl to 598mg/dl 

platelet 

Amount of platelets per cubic ml/1000 Numeric Ranges between 

62ml/liter to 

563ml/liter 

protime 

Prothrombin time, the amount of time it 

takes for blood to clot 

Numeric Ranges between 9 

seconds to 17.1 

seconds 

stage 

Histologic stage of disease which 

describes how much damage has been 

done to the liver. 

Stage 1=Inflammation and damage to the 

walls of medium-sized bile ducts 

Stage 2=Blockage of small bile ducts 

Stage 3=Beginning of scarring 

Stage 4=Permanent Cirrhosis has 

developed, resulting in severe damage to 

the liver 

Categorical 

Numeric 

Stages 1,2,3, and 4 

 

copper 
Amount of copper (in micrograms per 

day, 𝜇g/day)  

Numeric Ranges between 

4𝜇g/day to 588 𝜇g/day 

alk.phos 

Alkaline phosphate concentration in 

U/Liter 

Numeric Ranges between 

289U/Liter to 

13,862U/Liter 

ast 

Aspartate aminotransferase (AST) 

concentration in U/ml 

Numeric Ranges between 

26.35U/ml to 

457.25U/ml 

trig 
Triglyceride concentration in mg/dl Numeric Ranges between 

33mg/dl to 598mg/dl 

platelet 

Amount of platelets per cubic ml/1000 Numeric Ranges between 

62ml/liter to 

563ml/liter 
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2.2.2. Kaplan-Meier Estimator 

 The Kaplan-Meier survival curve was fitted. The plot of the survival curve along with the 

confidence band is given in Figure 1 below. 

  

 FIGURE 1. The Kaplan-Meier survival curve. 

From the table and the graph, there is a 100% survival up to age 25, after which patients 

start dying. Only about 60% of cohort survive past age 56, and around 20% are still alive at 

about age 69. The survival curve exhibits roughly linear downward trend, with a slight curvature 

downward and then upward. The change of curvature occurs around age 55. 
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 FIGURE 2. The Kaplan-Meier survival curves stratified by gender. 

In the data set, there are 36 male and 276 female patients where the “ticks” shown in the 

legend above represents censored observations. In Figure 2, we plotted the Kaplan-Meier 

survival curves stratified by gender. The earliest death occurs at about age 34 for males and 31 

for females. The 50% survival in males is around age 55 whereas in females it is around age 75. 

Since the survival curve for female patients lies consistently above that for male patients, 

females survive longer; however, judging by the appearance, there seems to be no significant 

difference in survival curves. To verify there are insignificant differences in survival curves for 

male vs. female, we carry out the log-rank test. From the log rank test output shown in Table 3A 

of appendix B, the test statistic is 𝜒2 = 1.2 with degrees of freedom 𝑛 − 1 = 1 where 𝑛 = 2 is 

the number of curves being compared. The P-value is 0.3 and since it was greater than 𝛼 =

0.05, we fail to reject the null hypothesis, concluding that there is no significant difference in 

gender survival curves.  
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FIGURE 3. The Kaplan-Meier survival curves for D-Penicillamine vs. Placebo Patients. 

In Figure 3, we plotted the survival curves for patients taking D-Penicillamine (the 

treatment group) versus those taking a placebo (the control group).  From the appearance of the 

curves, we can see that the curve D-Penicillamine group had a slightly longer survival time; 

however, compared to the placebo group, both curves show insignificant differences in survival 

length despite intersecting at several time points. To justify the claim of insignificant differences 

in survival probability, the log rank test was carried out. From the log rank test results shown in 

Table 3B of Appendix B, we achieve a test statistic is 𝜒2 = 0.1 with a corresponding P-value of 

0.08. Therefore, we fail to reject the null hypothesis at the 𝛼 = 0.05 level of significance, and 

conclude that there is no significant difference between survival curves for the D-Penicillamine 

and the control group patients. 
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2.2.3. The Nelson-Aalen Estimator 

The Nelson-Aalen estimator is an alternative estimator to the survival function in case of 

censored data. The overall survival curve depicted in Figure 4 below.  The numerical results of 

the Nelson-Aalen estimator are summarized in Table 2 of Appendix B. 

 

FIGURE 4. The Nelson-Aalen survival curve. 

From the table and the graph, there is a 100% survival up to age 30.9, after which patients 

start dying. The results (see Appendix B, Table 2) shows that more than 50% of the cohort died 

prior to reaching age 61. At the age of 67 is where 30% of the cohort are still alive but have a 

high risk of dying within a few months. The curve exhibits slow but steady downward trend 

which gets steeper as the patients’ age progresses. At the age range of 50-80 is where the graph 

is the steepest, as many patients die of old age. Comparing the results Nelson-Aalen estimator 
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with that of the Kaplan-Meier one, both estimators produced similar, but slightly deviating, 

survival probability estimates for patients over time.  

 

FIGURE 5. The Nelson-Aalen survival curves stratified by gender. 

 Figure 5 shows the Nelson-Aalen survival curves stratified by gender. From the graph, 

both curves for males and females exhibit a downward trend with several instances where the 

survival curves intersected. Likewise, the overall size of the survival curve for males was slightly 

larger than that of females, indicating that males had a higher survival length.  
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FIGURE 6. The Nelson-Aalen estimated survival curves for D-Penicillamine vs. Placebo 

patients.  

 

The graph shown in Figure 6 depicts the Nelson-Aalen survival curves for patients given 

D-Penicillamine vs. those who were given a placebo. From the graph, we see that the survival 

curves exhibit a similar behavior, not deviating from each other by much. This is indicative of no 

significant difference in patients’ hazard of dying between the two groups.  
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2.2.4. Weibull Estimator of Survival Function 

 

FIGURE 7. Weibull estimator of survival function. 

 Figure 7 depicts the survival function for the Weibull distribution. From the graph, the 

Weibull curve remains almost constant up until the age of 30. After age 30, the curve starts 

decaying slowly, then rapidly near the end since many patients die of old age. Therefore, we can 

conclude the Weibull parametric model is an appropriate fit for the data. The formula for the 

survival curves, as well as the estimates for the parameters are shown in the next section.  

2.2.5. Weibull Regression Model  

From the output of the Weibull regression model (see Appendix B, Table 2), the 

significant predictors at the 𝛼 = 0.05 level of significance were: edema, age, serum bilirubin 

concentration, albumin concentration, copper, AST concentration, prothrombin time, and 

histologic stage of disease.  



 

28 
 

From there, we fit a reduced Weibull model by re-running the model using only the 

significant predictors, and obtain the output given in Table 3 in Appendix B. The scale parameter 

of the distribution is estimated as �̂� = 0.614 where the shape parameter is equal to �̂� =
1

�̂�
=

1.63. The estimated parameter 𝜆 can be written as: 

�̂� = exp (
−(�̂�0 + �̂�1𝑥1 +⋯+ �̂�𝑘𝑥𝑘)

�̂�
) = exp (−

1

0.614
(11.095 − 0.562 ∙ 𝑒𝑑𝑒𝑚𝑎 

−0.020 ∙ 𝑎𝑔𝑒 − 0.050 ∙ 𝑏𝑖𝑙𝑖 + 0.461 ∙ 𝑎𝑙𝑏𝑢𝑚𝑖𝑛 − 0.002 ∙ 𝑐𝑜𝑝𝑝𝑒𝑟 − 0.003 ∙ 𝑎𝑠𝑡 − 0.176

∙ 𝑝𝑟𝑜𝑡𝑖𝑚𝑒 − 0.249 ∙ 𝑠𝑡𝑎𝑔𝑒) ). 

The fitted survival function is  

�̂�(𝑡) = exp(−�̂�𝑡�̂�) = exp (−exp (−
11.095 +⋯− 0.249 ∙ 𝑠𝑡𝑎𝑔𝑒

0.614
) 𝑡1.63) , 𝑡 ≥ 0. 

To justify whether the Weibull model is a good fit for the data, we conduct the deviance test. The 

test statistic is equal to 

𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = −2(ln 𝐿(𝛽0, 𝜎) − ln 𝐿(𝛽0, … , 𝛽𝑘, 𝜎)) 

= −2(−1188.753 − (−967.3627)) = 442.7803. 

The number of degrees of freedom is the same as the number of predictors in the fitted model, 

that is, 𝑑𝑓 = 8. Under the null hypothesis, the deviance follows a chi-squared distribution with 8 

degree of freedom, where the P-value is computed as 

ℙ(𝜒2(8) > 442.7803) ≪ 0.05. 

Since the P-value was significantly less than 𝛼 = 0.05, we accept the alternative hypothesis, and 

thus conclude that the Weibull model fits the data well. 
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Next, we give the interpretation of the significant estimated regression coefficients. 

Recall that the interpretation is done in terms of the estimated hazard function with the estimated 

regression coefficients �̂�∗ = −
�̂�

�̂�
= −

�̂�

0.614
 . 

1. For a one-unit increase in each stage of edema, there is a (exp(0.562/0.614) − 1) ∙

100% = 149.75% increase in the estimated hazard. 

2. For a one-year increase in age, there is a (exp(0.020/0.614) − 1) ∙ 100% = 3.31% 

increase in the estimated hazard. 

3. For a one-milligram increase in the bilirubin concentration per deciliter of blood, there is 

a (exp(0.05/0.614) − 1) ∙ 100% = 8.48% increase in the estimated hazard. 

4. For a one-milligram increase in albumin concentration per deciliter of blood, there is a 

(exp(−0.461/0.614) − 1) ∙ 100% = −52.80% change in the estimated hazard, that is, 

a 52.80% decrease. 

5. For each microgram increase in copper per day, there is a (exp(0.002/0.614) − 1) ∙

100% = 0.32% increase in the estimated hazard. 

6. For each unit increase in AST concentration per milliliter, there is a (exp(0.003/

0.614) − 1 ) ∙  100% = 0.49% increase in the estimated hazard. 

7. For each second increase of the Prothrombin time, there is a (exp(0.176/0.614) − 1) ∙

100% = 33.20% increase in the estimated hazard. 

8. For each one-unit increase in the historic stage of the disease, there is a (exp(0.249/

0.614) − 1) ∙ 100% = 50.01% increase in the estimated hazard. 

Next, we use the fitted Weibull model to predict the probability of survival of a 56-year-

old patient with no edema present, with a bilirubin concentration of 1.1 mg/dl, albumin 
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concentration of 4.4 mg/dl, copper concentration of 54 𝜇g/day, AST concentration of 113.5 

U/liter, a Prothrombin time of 10.4 seconds, and who is in the third stage. Therefore, we 

calculate 

𝜆0 = exp(−
1

0.614
(11.095 − 0.562(0) − 0.020(56) − 0.050(1.1) + 0.461(4.4) 

 −0.002(54) − 0.003(113.5) − 0.176(10.4) − 0.249(3))), 

 and the predicted survival probability of this patient at 1925 days: 

�̂�(1925) = exp(−(𝜆0)(1925)1.63) = 0.8955692. 

Thus, at 1925days, we can see that the survival probability of this patient is around 0.90. 

2.2.6. Cox Proportional Hazards Model 

Table 4 of Appendix B contains the output of fitting the Cox proportional hazards model. 

At the 𝛼 = 0.05 level of significance, the significant predictors were edema, age, serum bilirubin 

concentration, albumin concentration, copper, AST concentration, prothrombin time, and 

histologic stage of disease.  

From there, we fitted a reduced model by re-running the model specifying only the 

significant predictors and achieved a reduced Cox output which can be found in Table 5 of 

Appendix B.  

Before estimating the survival function of the Cox model, we must first estimate the 

baseline function �̂�0(𝑡) through a step function 𝑆̅(𝑡) equivalent to 

𝑆̅(𝑡) = [�̂�0(𝑡)]
exp (�̂�1�̅�1+⋯+�̂�𝑘�̅�𝑘)

 

where  �̅�1, … , �̅�𝑘 is our sample means of the significant predictors. The purpose of this step 

function is to model the survival function of an “average” individual by which the values of all 

predictors are equal to the sample means. Typically, the estimates of both the step function and 
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the sample means of the predictors can be achieved using a specific R command (see Tables 6, 

Appendix B). 

From the baseline survival, we can now estimate the fitted Cox survival function �̂�𝑇(𝑡) as  

�̂�𝑇(𝑡) = [𝑆̅(𝑡)]
exp (�̂�1(𝑥1−�̅�1)+⋯+�̂�𝑘(𝑥𝑘−�̅�𝑘)) = [𝑆̅(𝑡)]�̂� 

where �̂� = exp(0.832(𝑒𝑑𝑒𝑚𝑎 − 0.111) + 0.033(𝑎𝑔𝑒 − 50) + 0.085(𝑏𝑖𝑙𝑖 − 3.26)  

 −0.787(𝑎𝑙𝑏𝑢𝑚𝑖𝑛 − 3.52) + 0.003(𝑐𝑜𝑝𝑝𝑒𝑟 − 97.6) + 0.005(𝑎𝑠𝑡 − 123.0)

+ 0.268(𝑝𝑟𝑜𝑡𝑖𝑚𝑒−10.7) + 0.405(𝑠𝑡𝑎𝑔𝑒 − 3.03)). 

From the reduced Cox model, the fitted significant regression coefficients yield the 

following interpretation.  

1. For a one-unit increase in each stage of edema, there is a (exp(0.832) − 1) ∙

100% = 129.8% increase in the estimated hazard.  

2. For a one-year increase in age, there is a (exp(0.033) − 1) ∙ 100% = 3.36% 

increase in the estimated hazard.  

3. For a one-milligram increase in the bilirubin concentration, there is a 

(exp(0.085) − 1) ∙ 100% = 8.8% increase in the estimated hazard.   

4. For a one-milligram increase in albumin concentration, there is a (exp(−0.788) −

1) ∙ 100% = −54.53% change in the estimated hazard, that is a decrease of 54.53%. 

5. For each microgram increase in copper, there is a (exp(0.003) − 1) ∙ 100% =

0.30% increase in the estimated hazard.  

6. For each unit increase in AST concentration, there is a (exp(0.005) − 1 ) ∙  100% =

0.501% increase in the estimated hazard.  
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7. For each second increase of the Prothrombin time, there is a (exp(0.268) − 1) ∙

100% = 30.7% increase in the estimated hazard.  

8. For each one-unit increase in the historic stage of the disease, there is a 

(exp(0.405) − 1) ∙ 100% = 50% increase in the estimated hazard. 

Using the same information from the example involving the Weibull model (see Section 

2.2.5), we will now use our fitted Cox proportional hazards model to predict the survival of a 

patient at about time 𝑡 = 1925 days. We compute 

�̂�0 = exp{0.832(0 − 0.111) + 0.033(56 − 50) + 0.085(1.1 − 3.26)  − 0.787(4.4 − 3.52)

+ 0.003(54 − 97.6) + 0.005(113.5 − 123.0) + 0.268(10.4 − 10.7)

+ 0.405(3 − 3.03)} = exp(−1.041062) = 0.35308, 

and 

�̂�(1925) = [𝑆̅(1925)0]�̂�
0
= [0.760]�̂�

0
= [0.760](0.35308) = 0.9076. 

Thus, at 1925 days, the predicted probability for this particular patient hovers at around 91%, 

very close to our estimate achieved from the Weibull model.  
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CHAPTER 3 

LONGITUDINAL DATA ANALYSIS 

3.1. Regressions for Longitudinal Data 

Longitudinal data are defined as measurements collected on the same individuals at 

several time points. In the medical field, most of the collected data are collected longitudinally 

from medical records or during clinical trials.  The specificity of longitudinal data is that 

repeated measurements within each individual are expected to be correlated; therefore, a 

regression model should reflect potential correlations within each individual and no correlation 

between different individuals at any time points, same or not. 

Below we present the theoretical framework for the random slope and intercept models 

for the response variables with normal, gamma, binary logistic, and Poisson distributions. 

3.1.1 Normally Distributed Response  

To model this potential correlation within each individual, we can fit a mixed-effects 

model (or longitudinal model, or random slope and intercept model). This model is defined as 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑖𝑗 + 𝛽2𝑥2𝑖𝑗 +⋯+ 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝛽𝑘+1𝑡𝑗 + 𝑢1𝑖 + 𝑢2𝑖𝑡𝑗 + 𝜀𝑖𝑗 where the measurements 

on the 𝑖th individual (subject), 𝑖 = 1,… , 𝑛, are collected at time points 𝑡𝑗 , 𝑗 = 1, … , 𝑝,  and 

𝑥1, 𝑥2, … , 𝑥𝑘 denote the predictors (which may vary with time).  The term 𝑢1 is the random 

intercept and 𝑢2 is the random slope. Both 𝑢𝑖~𝑁(0, 𝜎𝑢𝑖
2 ), 𝑖 = 1,2,  and the random error 

𝜀~𝑁(0, 𝜎2). It is also assumed that 𝐶𝑜𝑣(𝑢1𝑖, 𝑢2𝑖) = 𝜎𝑢1𝑢2 and 𝐶𝑜𝑣(𝑢1𝑖, 𝑢2𝑖′) = 0 for 𝑖 ≠ 𝑖′. The 

slope and intercept are independent of the errors. The observed response 𝑦𝑖𝑗  on the 𝑖th subject at 

the 𝑗th time point is a normally distributed random variable with mean 𝜇 = 𝐸(𝑦𝑖𝑗) = 𝛽0 +

𝛽1𝑥1𝑖𝑗 +⋯+ 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝛽𝑘+1𝑡𝑗 and variance 𝑉𝑎𝑟(𝑦𝑖𝑗) = 𝜎𝑢1
2 + 2𝜎𝑢1𝑢2𝑡𝑗 + 𝜎𝑢2

2 𝑡𝑗
2 + 𝜎2. The 
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responses for different individuals at any time point (the same or not) are uncorrelated, that is,  

𝐶𝑜𝑣(𝑦𝑖𝑗 , 𝑦𝑖′𝑗′) = 0, 𝑖 ≠ 𝑖′. Observations for the same individual over time are correlated, 

𝐶𝑜𝑣(𝑦𝑖𝑗 , 𝑦𝑖𝑗′) = 𝜎𝑢1
2 + 𝜎𝑢1𝑢2(𝑡𝑗 + 𝑡𝑗′) + 𝜎𝑢2

2 𝑡𝑗𝑡𝑗′ , where 𝑗 ≠ 𝑗′. 

The fitted model is written as �̂�(𝑦) = �̂�0 + �̂�1𝑥1 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡, with the 

estimated parameters �̂�𝑢1
2 , �̂�𝑢2

2 , �̂�𝑢1𝑢2 , and �̂�2. The estimated regression coefficients yield the 

following interpretation. If 𝑥1is numeric, then �̂�1 represents the change in the estimated mean 

response for one-unit increase in 𝑥1, provided all the other predictors are unchanged. Indeed,  

�̂�(𝑦|𝑥1 + 1) − �̂�(𝑦|𝑥1) = �̂�0 + �̂�1(𝑥1 + 1) +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡 

−(�̂�0 + �̂�1𝑥1 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡) = �̂�1. 

If 𝑥1 is a 0-1 predictor variable, then �̂�1 is interpreted as a difference in the estimated mean 

response for 𝑥1 = 1 and 𝑥1 = 0, provided the other predictors stay fixed. This is justified 

because �̂�(𝑦|𝑥1 = 1) − �̂�(𝑦|𝑥1 = 0) = �̂�0 + �̂�1 ∙ 1 + ⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡 − (�̂�0 + �̂�1 ∙ 0 + ⋯+

�̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡) = �̂�1. 

From the fitted model, the predicted response 𝑦0 for a set of predictors 𝑥1
0, … , 𝑥𝑘

0, 𝑡0 is 

equal to 𝑦0 = �̂�0 + �̂�1𝑥1
0 +⋯+ �̂�𝑘𝑥𝑘

0 + �̂�𝑘+1𝑡
0. 

3.1.2 Model Goodness-of-Fit Check 

 To test how well the fitted model fits the data, a goodness-of-fit deviance test is 

employed. In this test the null hypothesis is that the null model fits the data better where the null 

model contains only fixed-effect predictors and no random-effect ones. The alternative 

hypothesis states that the fitted model (with mixed-effect terms) has a better fit. The test statistic 

is called deviance and is calculated as 

𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = −2(ln 𝐿(𝑛𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙) − ln 𝐿(𝑓𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)). 
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Under 𝐻0, the test statistic follows a 𝜒2- distribution with the number of degrees of 

freedom equal to the difference in the number of parameters used in both models. Namely, the 

full model contains 𝑘 + 2 fixed-effect regression coefficients plus 4 sigmas, whereas the null 

model contains only the 𝑘 + 2 betas plus one sigma. Therefore, the number of degrees of 

freedom in this case is 3. The fitted model has a good fit if the P-value is smaller than 0.05, and 

the alternative is accepted. 

3.1.3 Generalized Estimating Equations Model 

An alternative method to model longitudinal data is with Generalized Estimating 

Equations (GEE) models. In GEE models there are no random-effect terms and no random error. 

The distribution of the response variable is assumed known, the mean is modeled related to the 

linear regression term with fixed-effects only, and the variance-covariance structure is pre-

specified. The theory is as follows. 

Let 𝑥1𝑖𝑗 , … , 𝑥𝑘𝑖𝑗 denote the longitudinal observations of predictors for each individual 

𝑖, 𝑖 = 1,… , 𝑛, at time 𝑡𝑗 , 𝑗 = 1,… , 𝑝, and let 𝑦𝑖𝑗 denote the response for the 𝑖th individual at the 

𝑗th time point. The mean and variance of 𝑦𝑖𝑗 are equal to 𝜇𝑖𝑗 = 𝐸(𝑦𝑖𝑗) = 𝛽0 + 𝛽1𝑥1𝑖𝑗 +

𝛽2𝑥2𝑖𝑗 +⋯+ 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝛽𝑘+1𝑡𝑗 and 𝑉𝑎𝑟(𝑦𝑖𝑗) = 𝑉(𝜇𝑖𝑗) where 𝑉(. )  is the variance function. 

Next, the covariance structure of correlated responses for a given individual 𝑖, 𝑖 = 1, …𝑛, is 

modeled by a 𝑝 × 𝑝 matrix denoted by 

𝐀𝑖 = (

𝑉(𝜇𝑖1) 0 ∙ ∙ ∙ 0
0 𝑉(𝜇𝑖2) ∙ ∙ ∙ 0
0 0 ∙ ∙ ∙ ∙ ∙ ∙
0 0 ∙ ∙ ∙ 𝑉(𝜇𝑖𝑝)

). 

Observations between individuals are independent. Next, we let 𝐑𝑖(𝛂) represent the 

working correlation matrix of the repeated responses for the 𝑖th subject where 𝛂 represents a 
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vector of unknown parameters, equal for all subjects within the study. Then, the covariance 

matrix for the vector of responses 𝑦𝑖 = (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑝)
′
 is equal to  

𝐕i(𝛂) = 𝐀i
1/2
∙ 𝐑i(𝛂) ∙ 𝐀i

1/2
. 

The regression coefficients 𝛽0, … , 𝛽𝑘+1 and the vector of parameters 𝛂 are estimated 

numerically from the data by solving the generalized estimating equations: 

∑ (
𝜕𝝁𝑖
𝜕𝜷
)

𝑛

𝑖=1 (𝑘+2)×𝑝

[𝐕𝑖(�̂�)]𝑝×𝑝
−1 (𝒚𝒊 − 𝝁𝑖)𝑝×1 = 𝟎(𝑘+2)×1 

where 𝝁𝒊 = (𝜇𝑖1, … , 𝜇𝑖𝑝)′ is the vector of mean responses, and �̂� is the method-of-moments 

estimator of the vector of parameters. 

Remark: Five commonly used structures for the working correlation matrix 𝐑i(𝛂) for a 

GEE are: Unstructured, Toeplitz, autoregressive, compound symmetric (exchangeable), and 

independent.  

• Unstructured matrix with all different off-diagonal entries with all off-diagonal entries, 

having a total of 𝑝(𝑝 − 1)/2 unknown parameters 

𝐑𝐢(𝛂) =

(

 
 

1 𝛼12 𝛼13 ∙∙∙ 𝛼1𝑝
𝛼12 1 𝛼23 ∙∙∙ 𝛼2𝑝
𝛼13 𝛼23 1 ∙∙∙ 𝛼3𝑝
∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
𝛼1𝑝 𝛼2𝑝 𝛼3𝑝 ∙∙∙ 1 )

 
 
. 

• Toeplitz matrix with identical entries on each descending diagonal, having a total of 𝑝 −

1 unknown parameters 

𝐑𝐢(𝛂) =

(

 
 

1 𝛼1 𝛼2 ∙∙∙ 𝛼𝑝−1
𝛼1 1 𝛼1 ∙∙∙ 𝛼𝑝−2
𝛼2 𝛼1 1 ∙∙∙ 𝛼𝑝−3
∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
𝛼𝑝−1 𝛼𝑝−2 𝛼𝑝−3 ∙∙∙ 1 )

 
 
. 
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• Autoregressive matrix with 𝛼|𝑖−𝑗| in the 𝑖𝑗𝑡ℎ position, yielding a total of one unknown 

parameter 

𝐑𝐢(𝛂) =

(

 
 

1 𝛼 𝛼2 ∙∙∙ 𝛼𝑝−1

𝛼 1 𝛼 ∙∙∙ 𝛼𝑝−2

𝛼2 𝛼 1 ∙∙∙ 𝛼𝑝−3

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
𝛼𝑝−1 𝛼𝑝−2 𝛼𝑝−3 ∙∙∙ 1 )

 
 
. 

• Compound symmetric or exchangeable matrix with all identical off-diagonal elements, 

yielding a total of one unknown parameter 

𝐑𝐢(𝛂) =

(

 
 

1 𝛼 𝛼 ∙∙∙ 𝛼
𝛼 1 𝛼 ∙∙∙ 𝛼
𝛼 𝛼 1 ∙∙∙ 𝛼
∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
𝛼 𝛼 𝛼 ∙∙∙ 1)

 
 
. 

• Independent identity matrix with no unknown parameters 

𝐑𝐢(𝛂) =

(

 
 

1 0 0 ∙∙∙ 0
0 1 0 ∙∙∙ 0
0 0 1 ∙∙∙ 0
∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
0 0 0 ∙∙∙ 1)

 
 
. 

 To determine which model is the best fit for the data, the quasi-likelihood under the 

independence (QIC) model based on the function 

𝑄 =∑ ∑ ∫
𝑦𝑖𝑗 − 𝑢 

𝑉(𝑢)
𝑑𝑢

𝜇𝑖𝑗

𝑦𝑖𝑗

𝑝

𝑗=1

𝑛

𝑖=1
 

is computed for each type of working correlation matrix of the repeated responses. The QIC is a 

goodness-of-fit measure that is used to select the best-fitted working correlation structure. After 

computing the QIC for all the types of the correlation matrix structures, the model with the 

smallest QIC is used as the model of best fit. In the case where two or more models are tied with 

having the lowest QIC (i.e., share the same Q value), then either of those models has the best fit.  
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The fitted GEE model is written as �̂�(𝑦) = �̂�0 + �̂�1𝑥1 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡, with the 

estimated working correlation matrix �̂�(�̂�). Estimated regression coefficients are interpreted 

similar to how it is done in the mixed-effects model (see Section 3.1.1). 

3.1.4. Application of Normal Response 

TABLE 2. Description of Variables in Blood Pressure Dataset 

Name Description Type Values 

BLOOD_PRESSURE 
This is our predictor variable, the 

systolic blood pressure (in mm/hg). 
Numeric 

Varies based on 

input 

GENDER 
Male or Female Categorical 

Binary 

M or F 

ACTIVITY 

The daily activity level of patients. 

Measured on a scale of 1-10 where 

1= Not active and 10=Very active 

Categorical 

Numeric 

1=Not active 

6=Moderately 

active 

10=Very active 

SODIUM 

Level of dietary sodium consumed 

by patient daily 

Categorical 

Numeric 

1=Low Sodium 

2=Moderate 

Sodium 

3=High Sodium 

HISTORY 

Family history of high blood 

pressure 

 

Binary 

Numeric 

0= No family 

history of high 

blood pressure 

1= Patient’s 

family has a 

history of high 

blood pressure 
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TABLE 2. Continued 

Name Description Type Values 

CATEGORY 

Patients with a Systolic mm/Hg of 

less than 120 are classified as 

having normal blood pressure.  

 

Those with a systolic blood 

pressure of 120-129 mm/Hg are 

classified as having elevated blood 

pressure. 

 

Those with a systolic blood 

pressure of 130-139 mm/Hg are 

classified as having stage 1 blood 

pressure (Hypertension) 

 

Those with a systolic blood 

pressure of greater than 140 

mm/Hg are classified as having 

stage 2 blood pressure 

(Hypertension) 

 

Those with a systolic blood 

pressure of greater than 180 

mm/Hg are classified as having 

hypertensive crisis. Therefore, 

emergency treatment is required 

 

Categorical 

Numeric 

1= Normal 

blood pressure 

2= Elevate 

blood pressure 

3= 

Hypertension 

Stage 1 

4= 

Hypertension 

Stage 2 

5= 

Hypertensive 

crisis 

WEEK 

At the end of each week, patients 

visited the clinic and had their 

blood pressures recorded 

Numeric Ranges from 1 

week to 6 

weeks 

 

The Blood Pressure dataset (abbreviated as “bp”) is a simulated dataset consisting of 

  𝑛 = 45 patients of varying blood pressures. The purpose of this dataset was to test the 

effectiveness of a new pill on lowering patients’ systolic blood pressure levels. The scenario for 

this example is as follows. Prior to entering the clinical study, the researchers gave each patient a 

questionnaire that asks about the patients’ physical activity level, sodium intake level, and 

whether their families had a history of high blood pressure. The results from these questions can 
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provide the researchers more clues about the effectiveness of the clinical trial. After that, the 

patients’ systolic blood pressure was recorded once a week during the six-week study.  

3.1.5. Application (Normal response) 

 

FIGURE 8. Histogram of normal response. 

Figure 8 depicts the density histogram of the patients’ systolic blood pressure. From the 

appearance of graph, the response is symmetric about the mean, indicating that the data nearing 

the mean occurs more frequent than data far from the mean. Thus, the response follows a normal 

distribution very nicely. To justify our claim that the response is symmetric about the mean, the 

Shapiro-Wilk normality test shown (see Table 1A in Appendix D) is employed. From the results 

of the test, we observed that because 𝑝 = 0.1338 > 𝛼 at the  𝛼 = 0.05 level of significance, we 

conclude that the response is indeed normally distributed.  

 Table 2A of Appendix D depicts the random slope and intercept output for the normal 

response. From the output, it appears that the patients’ activity level, low sodium diet, patients 

whose families had a history of high blood pressure, the patients’ blood pressure category, and 
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the week the patients visited the clinic were deemed very significant predictors. Therefore, our 

fitted random slope and intercept model can be written as 

 �̂�(𝐵𝑙𝑜𝑜𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = 111 − 5.8𝑀𝑎𝑙𝑒 − 1.4𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 − 20.4𝑆𝑜𝑑𝑖𝑢𝑚(𝐿𝑒𝑣𝑒𝑙1) 

−3.6𝑆𝑜𝑑𝑖𝑢𝑚(𝐿𝑒𝑣𝑒𝑙2) − 8.5𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝑂𝑓𝐻𝑖𝑔ℎ𝐵𝑙𝑜𝑜𝑑𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 18.8𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 − 9.9𝑇𝑖𝑚𝑒. 

To determine whether a null model has a better fit against the fitted model, we employ 

the deviance test. During the test, we specify the null model as a standard generalized linear 

model, and the fitted model as a random slope and intercept model. The results obtained by the 

deviance test (see Appendix D, Table 1B), indicate that since the P-value was exponentially 

small, we accept the alternative hypothesis and therefore conclude that, compared to the null 

model, the fitted model fits the data better.  

Our interpretation of the significant predictors is as follows. The patients’ activity was 

measured on a scale of 1-10, with 10 being very active and 1 being very sedentary. For each unit 

increase in the activity scale, there was about a 1.42 mm/hg decrease in blood pressure, on 

average. Secondly, a low sodium diet played a critical role in lowering blood pressure 

concentration. Those who ate a low sodium diet decreased their estimated average blood pressure 

by about 20.43 mm/hg. This result is consistent with our common belief that a low sodium is 

indeed effective in lowering blood pressure levels. Furthermore, the estimated mean blood 

pressure level for patients whose families had a history of high blood pressure was 8.53mm/hg 

less than those whose families never had a history of high blood pressure. A plausible 

explanation for this occurrence was due to the effectiveness of the therapy session. With respect 

to each category in blood pressure, we observed the average blood pressure for each patient 

increase by about 18.83 mm/hg for each increase in blood pressure stage. Lastly, there is an 

estimated average of 9.92 mm/hg reduction in blood pressure every week. 
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Finally, we put our fitted model to the test by calculating the average systolic blood 

pressure by the end of week 4 of a female patient who is moderately active (i.e., Activity=6), eats 

a low sodium diet (i.e., sodium level=1), has no family history of high blood pressure, and is 

categorized as having Elevated Blood Pressure (i.e., Category=2). Using the fitted random slope 

and intercept model, the predicted blood pressure for this patient is 

𝐵𝑙𝑜𝑜𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒0  = 111 − 1.4(6) − 20.4(1) − 3.6(0) − 8.5(0) + 18.8(2) − 5.8(0) − 9.9(4) 

= 80.2 
𝑚𝑚

ℎ𝑔
. 

Next, we fit a generalized estimating equations (GEE) model for the normal response 

using the unstructured, autoregressive, exchangeable, and independent working correlation 

matrices. From the outputs shown in Tables 2B, 2C, 2D, and 2E in Appendix D, since the 

exchangeable GEE model has the lowest QIC out of the four, we conclude that the model with 

the exchangeable correlation matrix has the best fit. Therefore, we use this model for 

interpretation and prediction. 

Thus, the fitted generalized estimating equation model with the exchangeable working 

correlation matrix is  

�̂�(𝐵𝑙𝑜𝑜𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = 120.18 − 6.38𝑀𝑎𝑙𝑒 − 1.09𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 − 13.21𝑆𝑜𝑑𝑖𝑢𝑚(𝑙𝑒𝑣𝑒𝑙1) 

−2.54𝑆𝑜𝑑𝑖𝑢𝑚(𝑙𝑒𝑣𝑒𝑙2) − 10.64𝐻𝑖𝑠𝑡𝑜𝑟𝑦𝑂𝑓𝐻𝑖𝑔ℎ𝐵𝑙𝑜𝑜𝑑𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 14.61𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 −

9.92𝑊𝑒𝑒𝑘, and 

�̂�(�̂� = 0.369) =

(

 
 

1 �̂� �̂� ∙∙∙ �̂�
�̂� 1 �̂� ∙∙∙ �̂�
�̂� �̂� 1 ∙∙∙ �̂�
∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
�̂� �̂� �̂� ∙∙∙ 1)

 
 
= (

1 0.369 0.369 0.369
0.369 1 0.369 0.369
0.369 0.369 1 0.369
0.369 0.369 0.369 1

). 

 At the 𝛼 = 0.05 level of significance, patients whose families had a history of high 

blood pressure, the patients’ blood pressure category, and the week the patients visited the clinic 
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were deemed very significant predictors. Therefore, our interpretation of the significant 

estimated regression coefficients is as follows. The estimated mean blood pressure level for 

patients whose families had a history of high blood pressure was 10.64mm/hg less than those 

whose families never had a history of high blood pressure. Further, we observed the average 

blood pressure for each patient increase by about 14.61 mm/hg for each increase in blood 

pressure stage. Lastly, there is an estimated average of 9.92 mm/hg reduction in blood pressure 

every week.  

 Putting our fitted GEE model to the test, using the same example, our predicted blood 

pressure for this patient by the end of the fourth week is 

𝐵𝑙𝑜𝑜𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒0 = 120.18 − 6.38(0) − 1.09(6) − 13.21(1) − 2.64(0) 

−10.64(0) + 14.61(2) − 9.92(4) = 89.97 
𝑚𝑚

ℎ𝑔
. 

Thus, from our prediction, we can conclude that from the clinical trial performed on this 

specific patient, this person is predicted to have normal blood pressure by the end of the fourth 

week. 

3.2. Regressions for Gamma Response  

3.2.1. Theoretical Framework 

In a longitudinal setting, gamma regression is appropriate to use if the response variable 

𝑦𝑖𝑗 in a dataset follows a right-skewed distribution (i.e., has a long right tail). In that case, the 

response is written as  𝑦𝑖𝑗~Γ(α, β) with the probability density function equal to  𝑓(𝑦𝑖𝑗) =

𝑦𝑖𝑗
𝛼−1 

Γ(𝛼)𝛽𝛼
exp (−

𝑦𝑖𝑗

𝛽
)  𝛼, 𝛽, 𝑦 > 0,  where the expected value of 𝑦𝑖𝑗 is 𝜇𝑖𝑗 = 𝐸(𝑦𝑖𝑗) = 𝛼𝛽, with 𝛼 

and 𝛽 being the shape and scale parameters. To model the expected value of the response as it 

relates to the linear combination of explanatory variables, a log-link function is used. For fixed 
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values of the random intercept 𝑢1𝑖 and slope 𝑢2𝑖, we can write ln( 𝜇𝑖𝑗) = ln 𝐸(𝑦𝑖𝑗) = 𝛽0 +

𝛽1𝑥1𝑖𝑗 + 𝛽2𝑥2𝑖𝑗 +⋯+ 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝛽𝑘+1𝑡𝑗 + 𝑢1𝑖 + 𝑢2𝑖𝑡𝑗 . The random intercepts 𝑢1𝑖’s are 

independent 𝑁(0, 𝜎𝑢1
2 ) random variables, the random slopes 𝑢2𝑖’s are independent 𝑁(0, 𝜎𝑢2

2 ) 

random variables,  and the covariance between 𝑢1𝑖  and 𝑢2𝑖 is 𝜎𝑢1𝑢2.  

It is customary to write the fitted model as �̂�(𝑦) = �̂��̂� = exp(�̂�0 + �̂�1𝑥1 +⋯+ �̂�𝑘𝑥𝑘 +

�̂�𝑘+1𝑡) where all beta parameters along with the random effects parameters 𝜎𝑢1
2 , 𝜎𝑢1𝑢2 , and  𝜎𝑢2

2  

are estimated from the data through the maximum-likelihood method.  

Consequently, the parameters 𝛽0, … , 𝛽𝑘+1 and 𝛼 are unknown and are then estimated by 

the method of maximum likelihood. The estimates of the regression coefficients 𝛽0, … , 𝛽𝑘+1 

yield the following interpretation. From the model, if a predictor variable 𝑥1 is numeric, then the 

change in the estimated mean response for a unit increase in 𝑥1, provided all other predictors stay 

unchanged, is equal to  

�̂�(𝑦|𝑥1 + 1) − �̂�(𝑦|𝑥1)

�̂�(𝑦|𝑥1)
 

exp(�̂�0 + �̂�1(𝑥1 + 1) +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡) − exp(�̂�0 + �̂�1𝑥1 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡)

exp(�̂�0 + �̂�1𝑥1 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡)
 

= exp(�̂�1) − 1. 

Equivalently, (exp(�̂�1) − 1) ∙ 100% represents the percentage change in estimated mean 

response for a unit increase in 𝑥1.  

If 𝑥1 is a 0-1 predictor variable, then the percent ratio of the estimated mean response �̂�(𝑦) for 

𝑥1 = 1 and 𝑥1 = 0, provided the other predictors stay unchanged, is equal to 

�̂�(𝑦|𝑥1 = 1)

�̂�(𝑦|𝑥1 = 0)
∙ 100% =

exp(�̂�0 + �̂�1 ∙ 1 + ⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡)

exp(�̂�0 + �̂�1 ∙ 0 + ⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡)
∙ 100% = exp(�̂�1) ∙ 100%. 
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From the fitted model, the predicted response 𝑦0 for a set of predictors 𝑥1
0, … , 𝑥𝑘

0, 𝑡0 is 

equal to 𝑦0 = exp (�̂�0 + �̂�1𝑥1
0 +⋯+ �̂�𝑘𝑥𝑘

0 + �̂�𝑘+1𝑡
0). 

Further, the GEE model for the gamma-distributed response estimates the mean response 

through the function �̂�(𝑦) = exp(�̂�0 + �̂�1𝑥1 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡),   and the best fitted structure 

of the working correlation matrix is the one with the smallest QIC value. Like in the fitted 

random slope and intercept model, the beta parameters along with the parameters of the working 

correlation matrix are estimated through the maximum-likelihood estimation. Interpretation of 

estimated regression coefficients is done the same way as above. 

3.2.2. Data Description Cancer (Gamma response) 

TABLE 3. Description of variables in Cancer dataset 

Name Description Type Values 

Oral_cond 
This is our response variable, predicting 

the oral condition of patients 
Numeric 

Varies based 

on input 

SEX 
Male or Female Binary 

Categorical  

M or F 

TRT 

Patients were randomly assigned to a  

treatment and control group 

Binary 

Categorical 

0=Tx (Aloe 

Juice) 

1=Cx 

(Placebo) 

 

AGE 

Age of patients 

Numeric 

Ranges from 

26 to 86 years 

old 

WEIGHT 

Weight of patients (in lbs) Numeric Ranges from 

120 lbs to 300 

lbs 
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TABLE 3. Continued 

Name Description Type Values 

STAGE 

 

This is the initial cancer stage of the 

patients prior to entering the study. 

There are four stages in cancer: 

 

Stage 1= Typically a small cancer or 

tumor that has not grown deeply within 

the tissues; 

 

Stage 2= Larger cancers or tumors have 

grown more deeply into nearby tissue. 

The cancer may have spread to the 

lymph nodes, but not to other parts of 

the body; 

 

Stage 3= The tumor may have grown to 

a specific size and likely have spread to 

adjacent lymph nodes, organs, or 

tissues; 

 

Stage 4= Serious cancer condition 

where the cancer has spread from origin 

to distant parts of the body. 

Multinomial 

Categorical 

1= Stage 1 

2= Stage 2 

3= Stage 3 

4= Stage 4 

 

WEEKS The Oral Condition of patients were 

measured every two weeks during the 

6-week study. The Oral Condition is 

measured on a scale of 1-25 where an 

oral condition between the range of 15-

25 represents having excellent oral 

health while an oral condition of 1 

represents the worst possible oral 

health. 

Numeric Varies over 

time 

 

The cancer dataset is a subset of data for a longitudinal study of the oral condition of 

cancer patients at the Mid-Michigan Medical Center. The primary goal for this dataset was to 

determine the effectiveness of the treatment (aloe juice) against a placebo in improving the oral 

condition of patients. The Oral Condition is measured on a scale of 1-25 where an oral condition 
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between the range of 15-25 represents having excellent oral health, the range of 10-15 represents 

normal oral health, and anything below 10 represents bad oral health. The oral condition of 

patients was measured every other week for a total of six weeks in this longitudinal study. 

During the study, the researchers found out that the oral health distribution was more right 

skewed, with the majority of patients falling within the 5-10 range, as opposed to the 20-25 

range. Thus, a Gamma regression would appropriately model the response.  

This sample dataset originally contained 𝑛 = 25 patients with neck cancer, but extra 

patients were simulated for illustrative purposes.  

3.2.3. Application 

 

FIGURE 9. Histogram for oral condition. 

 From the histogram, the distribution of oral condition has a right-skewed distribution.  To 

verify this claim, the Shapiro-Wilk normality test was run (see Appendix D, Table 3A). The P-

value of the test is less than 0.05, leading to conclusion that the response is not normally 

distributed.   
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Next, we fit a random slope and intercept model that models the response, the oral 

condition of patients, and achieved an output which is shown in Table 4 of Appendix D. From 

the output, at the  𝛼 = 0.05 level of significance, we observed that the treatment (aloe juice) 

along with the number of weeks were significant predictors in determining the oral condition of 

the patients. The rest of the predictors were insignificant as they had P-values greater than  𝛼 =

0.10. The fitted random slope and intercept gamma model can be written as: 

�̂�(𝑂𝑟𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) = exp  (1.643 − 0.1231𝑀𝑎𝑙𝑒 + 0.3223𝑇𝑥 − 0.0015𝐴𝑔𝑒 

+0.0013𝑊𝑒𝑖𝑔ℎ𝑡 + 0.045𝑆𝑡𝑎𝑔𝑒 + 0.083𝑊𝑒𝑒𝑘𝑠). 

To check goodness-of-fit of the mode, we ran the deviance test. In this test, we specify 

our null model as a standard generalized linear model and our fitted model as that of a random 

slope and intercept model. From the deviance test results (see Appendix D, Table 3B), since the 

P-value was exponentially small, we concluded that the fitted model for the gamma response was 

better compared to the null.  

Thus, our interpretation of the significant predictors is as follows. First, the estimated 

mean oral condition for patients in the treatment group is exp(0.3223) ∙ 100% = 138.03% of 

that for the patients in the control group. Next, for every week in the study, the estimated average 

oral condition of patients increases by exp(0.083) ∙ 100% = 108.68%.  

Using the fitted random slope and intercept model, our goal now is to predict the 

expected initial (week=0) oral condition of a 68-year-old female patient weighing 168 lbs., who 

is randomly assigned to the treatment group, and who is in the first cancer stage. The predicted 

value is: 

𝑂𝑟𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛0 = exp(1.643 − 0.1231(0) + 0.3223(1) − 0.001568 

+0.0013(168) + 0.045(1) + 0.083(0)) = exp(2.22713) = 9.27. 
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Next, we fit a generalized estimating equations (GEE) model shown in Section 3.1.2 for 

the gamma response using the autoregressive, unstructured, exchangeable, and independent 

working correlation matrices. From the outputs shown in tables 4B, 4C, 4D, and 4E of Appendix 

D, since the unstructured GEE model had the lowest QIC out of the four, we conclude that the 

model with the unstructured working correlation matrix was the best-fitted model.  It is written 

as 

�̂�(𝑂𝑟𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) = exp(1.516 − 0.126𝑀𝑎𝑙𝑒 + 0.664𝑇𝑥 − 0.0013𝐴𝑔𝑒 + 0.00068𝑊𝑒𝑖𝑔ℎ𝑖𝑛 

+0.02𝑆𝑡𝑎𝑔𝑒 + 0.069𝑊𝑒𝑒𝑘𝑠), and  

�̂�𝐢(�̂�) =

(

  
 

1 �̂�12 �̂�13 ∙∙∙ �̂�1𝑝
�̂�12 1 �̂�23 ∙∙∙ �̂�2𝑝
�̂�13 �̂�23 1 ∙∙∙ �̂�3𝑝
∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
�̂�1𝑝 �̂�2𝑝 �̂�3𝑝 ∙∙∙ 1 )

  
 

 

= (

1 1.0973 0.3948 −0.0734
1.0973 1 0.5157 0.2773
0.3948 0.5157 1 0.5379
−0.0734 0.2773 0.5379 1

). 

The interpretation of the significant estimated regression coefficients is as follows. First, 

we observed that estimated cancer for males was exp(−0.126) ∙ 100% = 88.2% of that for 

females. Second, the estimated average oral condition for patients in the treatment group was 

exp(0.664) ∙ 100% = 194% of that in the control group. Lastly, for every two weeks, the 

estimated average oral condition of patients changes by about exp(0.069) ∙ 100% = 107.14%.  

For our fitted GEE model with the unstructured working correlation matrix, using the 

same example, our predicted oral condition is  

𝑂𝑟𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛0  = exp(1.516 − 0.126(0) + 0.664(1) − 0.0013(68) + 0.00068(168) 

+0.021 + 0.069(0)) = exp(2.23) = 9.30. 
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From the results of the predictions, we observe that at 𝑊𝑒𝑒𝑘𝑠 = 0 this patient is expected 

to have an oral condition of 9.27 from the fitted random slope and intercept model and 9.30 from 

the fitted GEE model. The results obtained through both fitted models were very close.  

3.3. Regressions for Binary Response  

3.3.1. Theoretical Framework 

Binary logistic regression with random slope and intercept is used to model longitudinal 

data where the response variable assumes values 0 or 1. For subject 𝑖, 𝑖 = 1,… , 𝑛,  at time 𝑡𝑗  , 𝑗 =

1, … , 𝑝,  let 𝜋𝑖𝑗 = 𝑃(𝑦𝑖𝑗 = 1).  Note that 𝜋𝑖𝑗 is also the mean of 𝑦𝑖𝑗 . Indeed, 𝐸(𝑦𝑖𝑗) = 1 ∙ 𝜋𝑖𝑗 +

0 ∙ (1 − 𝜋𝑖𝑗) = 𝜋𝑖𝑗 . The random slope and intercept model for a binary response can be written 

as: 

𝜋𝑖𝑗 = 𝐸(𝑦𝑖𝑗) =
exp(𝛽0 + 𝛽1𝑥1𝑖𝑗 +⋯+ 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝛽𝑘+1𝑡𝑗 + 𝑢1𝑖 + 𝑢2𝑖𝑡𝑗)

1 + exp(𝛽0 + 𝛽1𝑥1𝑖𝑗 +⋯+ 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝛽𝑘+1𝑡𝑗 + 𝑢1𝑖 + 𝑢2𝑖𝑡𝑗)
 . 

An alternative form of the model is: 

𝜋𝑖𝑗(𝑢)

1 − 𝜋𝑖𝑗(𝑢)
= exp{𝛽0 + 𝛽1𝑥1𝑖𝑗 +⋯+ 𝛽𝑘𝑥𝑘𝑖𝑗 + 𝛽𝑘+1𝑡𝑗 + 𝑢1𝑖 + 𝑢2𝑖𝑡𝑗} . 

Here 𝑢1𝑖′s~𝑁(0, 𝜎𝑢1
2 ) are the random intercepts and 𝑢2𝑖′s ~𝑁(0, 𝜎𝑢2

2 ) are the random slopes for 

 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑝. The covariance between 𝑢1𝑖  and 𝑢2𝑖 is 𝜎𝑢1𝑢2.  The parameters of this 

model 𝛽0, … , 𝛽𝑘+1, 𝜎𝑢1
2 , 𝜎𝑢2

2 , is 𝜎𝑢1𝑢2 , and 𝜎𝑢
2 are estimated numerically by maximum likelihood 

estimation.   The fitted mean response in this model can be written as: 

�̂�(𝑦) =
exp(�̂�0+�̂�1𝑥1+⋯+�̂�𝑘𝑥𝑘+�̂�𝑘+1𝑡)

1+exp(�̂�0+�̂�1𝑥1+⋯+�̂�𝑘𝑥𝑘+�̂�𝑘+1𝑡)
 ,  

or equivalently, 

�̂�

1 − �̂�
= exp{�̂�0+ �̂�1𝑥1 +⋯+ �̂�𝑘𝑥𝑘+ �̂�𝑘+1𝑡} . 
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The ratio 
�̂�

1−�̂�
  represents the estimated odds in favor of 𝑦 = 1. The estimated regression 

coefficients yield the following interpretation in terms of the estimated odds. If 𝑥1 is numeric, 

(exp( �̂�1) − 1) ∙ 100% represents the estimated percent change in the odds for a one-unit 

increase in 𝑥1, given that all the other predictors remain fixed. This can be seen by writing  

�̂�|𝑥1+1
1 − �̂�|𝑥1+1

−
�̂�|𝑥1

1 − �̂�|𝑥1
�̂�|𝑥1

1 − �̂�|𝑥1

∙ 100% 

=
exp(�̂�0 + �̂�1(𝑥1 + 1) + ⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡) − exp(�̂�0 + �̂�1𝑥1 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡) 

exp(�̂�0 + �̂�1𝑥1 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡)
∙ 100% 

= (exp(�̂�1) − 1) ∙ 100% . 

If 𝑥1 is a 0-1 variable, then exp(�̂�1) ∙ 100% can be interpreted as the estimated ratio of odds for 

𝑥1 = 1  and that for 𝑥1 = 0, under the condition that the other predictors are held constant.  We 

demonstrate this by writing 

(
�̂�|𝑥1=1

1 − �̂�|𝑥1=1
)

(
�̂�|𝑥1=0

1 − �̂�|𝑥1=0
)

∙ 100% =
exp(�̂�0 + �̂�1 ∙ 1 + ⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡)

exp(�̂�0 + �̂�1 ∙ 0 + ⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡)
∙ 100% = exp(�̂�1) ∙ 100%. 

From the fitted model, for values of predictor variables 𝑥1
0, … , 𝑥𝑘

0, and 𝑡0, the predicted 

probability 𝜋 is: 

𝜋0 =
exp (�̂�0 + �̂�1𝑥1

0 +⋯+ �̂�𝑘𝑥𝑘
0 + �̂�𝑘+1𝑡

0)

1 + exp (�̂�0 + �̂�1𝑥1
0 +⋯+ �̂�𝑘𝑥𝑘

0 + �̂�𝑘+1𝑡0)
 . 

Furthermore, the generalized estimating equations model for the binary response in 

longitudinal setting has the mean response  �̂�(𝑦) =
exp (�̂�0+�̂�1𝑥1+⋯+�̂�𝑘𝑥𝑘+�̂�𝑘+1𝑡)

1+exp (�̂�0+�̂�1𝑥1+⋯+�̂�𝑘𝑥𝑘+�̂�𝑘+1𝑡)
 and 

unstructured, autoregressive, exchangeable, or independent working correlation matrix. 
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3.3.2. Data Description Anthrax (Binary response)  

TABLE 4. Description of variables in Anthrax dataset 

Name Description Type Values 

remission_from_anthrax 

The binary response variable, 

measuring whether the person has 

any symptoms of Anthrax.  
Binary 

Either 0 or 

1 

0=No 

1=Yes 

age 

The age of patients recorded in 

the study. 
Categorical 

Binary 

Ranges 

from 21 

years old to 

80 years 

old 

medicine 

Patients were randomly assigned 

to either a treatment group (Tx) 

or a control group (Cx). The 

treatment group received 

medicine (Antitoxin) while the 

control group received an 

unknown placebo drug. 

Binary 

Numeric 

0=Tx 

(Antitoxin) 

1=Cx 

(Placebo) 

 

gender 
Gender of patients 

Numeric 
Male(M) or 

Female(F) 

risk 

The risk (i.e. chance) of 

contacting anthrax. Abbreviated 

on a scale of 1(very low risk) to 5 

(very high risk) 

Binary 

Numeric 

Ranges 

from 120 

lbs to 300 

lbs 

contacted 

Patient had possible contact with 

someone or something that 

showed symptoms of anthrax 

prior to entering the clinical trial. 

Binary 

categorical 

Either Y or 

N 

Months Patients were recorded once 

every month for 12 months to see 

if they have symptoms of 

anthrax. 

0=No presence of anthrax 

1=Presence of anthrax 

 

Numeric Either 0 or 

1 

 

The Anthrax dataset is a simulated longitudinal dataset with the purpose of determining 

whether Antitoxin (Tx) is effective against anthrax, a skin infection caused by bacteria 

commonly found in soil. The simulated dataset contains 𝑛 = 100 patients of various ages. Prior 
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to entering the study, the patients were asked if they had contact with either a human or an 

animal that showed possible signs of Anthrax. If so, then this information could provide 

researchers evidence about the effectiveness of Antitoxin. Next, patients were randomly assigned 

to either a treatment (Tx) group or control (Cx) group. The treatment group received Antitoxin 

while the control group patients received a placebo. In follow up survey, the researchers 

contacted each patient once a month for any symptoms of Anthrax. The results were recorded 

each month for a total of 12 months.  

3.3.3. Application 

 In this data set, the response variable measured was presence or absence of anthrax 

symptoms.  The histogram of the response variable is given below (see Figure 10). 

 

FIGURE 10. Histogram of Binary Response. 

Next, we fitted a random slope and intercept binary logistic model. The output can be 

found in Table 6A in Appendix D. From the output, at the 𝛼 = 0.05 level of significance, the 

Antitoxin, prior exposure to Anthrax, and month of inspection were all deemed significant 
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predictors. Out of all the significant predictors, we noticed the Antitoxin was by far the most 

significant one, yielding a very minuscule P-Value of 𝑝 = 5.00 ∙ 10−15. Consequently, we can 

therefore conclude that Antitoxin was indeed very effective against anthrax. Following our 

analysis, we can write the fitted model as: 

�̂�

1 − �̂�
= exp(1.875 − 0.00033𝐴𝑔𝑒 − 1.661𝑇𝑥 + 0.028𝑀𝑎𝑙𝑒 −  0.056𝑅𝑖𝑠𝑘 − 0.310

∙ 𝑁𝑜𝑃𝑟𝑖𝑜𝑟𝐶𝑜𝑛𝑡𝑎𝑐𝑡 − 0.210𝑀𝑜𝑛𝑡ℎ). 

Next, we conduct the deviance test with the null model being the ordinary binary logistic 

model. The P-value for this test is very small (see Table 5 in Appendix D), leading to conclusion 

that the longitudinal model has a better fit.  

The interpretation of the significant regression coefficients is as follows. The estimated 

odds in favor of anthrax for patients in the treatment group is exp(−1.661) ∙ 100% = 19% of 

that for patients in the control group (meaning that the treatment is effective).  In addition, the 

estimated odds of having anthrax for patients who had no prior contact with this disease before 

entering the clinical trial are exp(−0.310) ∙ 100% = 73.34% of those for patients who were 

exposed to the disease in the past. Lastly, the estimated odds in favor of anthrax change by 

(exp(−0.211) − 1)) ∙ 100% = −19.03% every month, that is, decrease every month by 

19.03%. 

Finally, we would like to predict the probability of a certain patient showing remission 

from anthrax by month 6. Suppose this patient is a 29-year-old male farmer who is at high risk of 

contracting the disease. His family, who are also farmers, has had a history of contracting 

anthrax (i.e., showed previous exposure to this disease). Suppose also, the patient was randomly 
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assigned to the treatment group. The predicted probability of remission from anthrax for this 

patient is 

�̂�0 =
exp (𝑟0)

1 + exp (𝑟0)
 

where 𝑟0 = 1.875 − 0.00033(29) − 1.661(1) + 0.028(1) − 0.056(5) − 0.310(1) −

0.210(6) = −1.61757. Thus,  

�̂�0 =
exp (−1.61757)

1 + exp (−1.61757)
= 0.16554. 

Next, we fit a generalized estimating equations model for the binary logistic response 

using the autoregressive, exchangeable, and independent working correlation matrices. The 

unstructured model was not able to converge, so that was omitted from consideration. Tables 6A, 

6B, and 6C in Appendix D present the outputs of the GEE models for this response. Since all 

three GEE models shared the same QIC of 1441, we conclude that all three of the models can be 

a good fit for this data set. Therefore, we will arbitrarily choose the independent working 

correlation matrix GEE model as our fitted model. 

From the output, the fitted GEE model is written as 

�̂�

1 − �̂�
= exp(1.403 + 0.00077𝐴𝑔𝑒 − 1.23𝑇𝑥 + 0.028𝑀𝑎𝑙𝑒 − 0.041𝑅𝑖𝑠𝑘 − 0.383

∙ 𝑁𝑜𝑃𝑟𝑖𝑜𝑟𝐶𝑜𝑛𝑡𝑎𝑐𝑡 − 0.163𝑀𝑜𝑛𝑡ℎ). 

The working correlation matrix is the identity matrix 

𝐑𝐢 =

(

 
 

1 0 0 ∙∙∙ 0
0 1 0 ∙∙∙ 0
0 0 1 ∙∙∙ 0
∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
0 0 0 ∙∙∙ 1)

 
 
 . 
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The interpretation of the significant regression coefficients is as follows. The estimated 

odds in favor of remission from anthrax for patients in the treatment group are exp(−1.23) ∙

100% = 29.23% of those for patients in the control group, meaning that the treatment is 

efficient. Secondly, the estimated odds for those who had no prior contact with this disease 

before entering the clinical trial are exp(−0.383) ∙ 100% = 68.18% of those patients who were 

exposed to the disease in the past. Lastly, the estimated odds of anthrax change by 

(exp(−0.163) − 1) ∙ 100% = −15.05% each month, that is, decrease every month by 15.05%. 

Using the fitted GEE model with the independent working correlation matrix, we predict 

the probability of remission from anthrax for the patients described previously in this section. 

The predicted value is 𝑟0 = 1.403 + 0.00077(29) − 1.23(1) + 0.028(1) − 0.041(5) − 0.383 ∙

(1) − 0.163(6) = −1.34267, and 

�̂�0 =
exp (𝑟0)

1 + exp (𝑟0)
=

exp (−1.34267)

1 + exp (−1.34267)
= 0.207071. 

3.4. Regressions for Poisson Response 

3.4.1. Theoretical Framework 

In a random slope and intercept Poisson regression model the response variable 𝑦 follows 

a Poisson distribution with the probability mass function 𝑃(𝑦) =
𝜆𝑦𝑒−𝜆

𝑦!
, 𝑦 = 0, 1, 2, ….   For the 

𝑖th individual at time 𝑡𝑗, predictors 𝑥1𝑖𝑗 , … , 𝑥𝑘𝑖𝑗  and fixed values 𝑢1𝑖 and 𝑢2𝑖 of the random 

intercept and slope, respectively, the parameter 𝜆𝑖𝑗 is written as 𝜆𝑖𝑗 = exp(𝛽0 + 𝛽1𝑥1𝑖𝑗 +⋯+

𝛽𝑘𝑥𝑘𝑖𝑗 + 𝛽𝑘+1𝑡𝑗 + 𝑢1𝑖 + 𝑢2𝑖𝑡𝑗). The random intercepts 𝑢1𝑖’s are independent 𝑁(0, 𝜎𝑢1
2 ) random 

variables, the random slopes 𝑢2𝑖’s are independent 𝑁(0, 𝜎𝑢2
2 ) random variables,  and the 

covariance between 𝑢1𝑖  and 𝑢2𝑖 is 𝜎𝑢1𝑢2.  
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The fitted model has the estimated rate �̂� = �̂�(𝑦) = exp (�̂�0 + �̂�1𝑥1 +⋯+ �̂�𝑛𝑥𝑘 +

�̂�𝑘+1𝑡). The parameters of the model are  𝛽0, … , 𝛽𝑘+1, 𝜎𝑢1
2 , 𝜎𝑢2

2 , and 𝜎𝑢1𝑢2 , which are estimated by 

the maximum-likelihood method. 

From the fitted model, the estimates of the regression coefficients yield the following 

interpretation. For a numeric predictor 𝑥1, the estimated change in rate when 𝑥1 increases by one 

unit, while all the other predictors are held fixed, is equal to: 

�̂�|𝑥1+1 − �̂�| 𝑥1
�̂�| 𝑥1

=
exp(�̂�0 + �̂�1(𝑥1 + 1) + �̂�2𝑥2 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡) − exp(�̂�0 + �̂�1𝑥1 + �̂�2𝑥2 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡)

exp(�̂�0 + �̂�1𝑥1 + �̂�2𝑥2 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡)

= exp(�̂�1) − 1. 

Thus, (exp(�̂�1) − 1) ∙ 100% is also equivalently interpreted as the estimated percent 

change in rate when 𝑥1 increases by one unit, given all the other predictors are fixed. 

If the predictor 𝑥1 is a 0-1predictor, then the ratio of the estimated rates when 𝑥1 = 1 and when 

𝑥1 = 0 is equal to: 

�̂�|𝑥1=1

�̂�| 𝑥1=0
=
exp(�̂�0 + �̂�1 ∙ 1 + �̂�2𝑥2 +⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡)

exp(�̂�0 + �̂�1 ∙ 0 + ⋯+ �̂�𝑘𝑥𝑘 + �̂�𝑘+1𝑡)
= exp(�̂�1). 

Hence, exp{�̂�1} ∙ 100% is equivalently interpreted as the percent ratio of estimated rates when 

𝑥1 = 1 and 𝑥1 = 0, given that the other predictors remain constant. 

From the fitted model,  for a given set of predictors 𝑥1
0, … , 𝑥𝑘

0, 𝑡0, the predicted response is found 

as 𝑦0 = exp (�̂�0 + �̂�1𝑥1
0 +⋯+ �̂�𝑘𝑥𝑘

0 + �̂�𝑘+1𝑡
0). 

Further, the generalized estimating equations approach models the response variable as a 

Poisson random variable with mean 𝐸(𝑦) = exp (𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘 + 𝛽𝑘+1𝑡) and an 
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unstructured, autoregressive, exchangeable, or independent working correlation matrix. As 

before, the best-fitted model has the smallest value of the QIC criterion. 

3.4.2. Data Description Cigarettes (Poisson Response)  

TABLE 5. Description of Variables in Cigarette Dataset 

Name Description Type Values 

N_CIGARETTES This is our response variable, number 

of cigarettes smoked. 

Numeric Varies based on 

input 

SEX Sex of patient Binary 

Categorical 

M or F 

TRT Patients were randomly assigned to 

either a treatment group (Tx) or a 

control group (Cx). The treatment 

group received medicine (Chantix) 

while the control group received an 

unknown placebo drug. 

Binary 

Categorical 

Tx or Cx 

AGE Age of patients Numeric Ranges from age 

21 to age 80 

Weight Weight of patients (in lbs) Numeric Ranges from 101 

pounds to 297 

pounds 

Intention Did the patient intend to quit smoking 

prior to entering this clinical trial?  

• 0=No 

• 1=Yes 

Binary 

Categorical 

Either 0 or 1 

Addiction.Status A numeric scale from 1 to 5 that 

measures the level of patient cigarette 

addiction 

• 1= Minimal level of 

addiction 

• 5= Maximum level of 

addiction. Medicine is 

mandatory. 

Numeric  Ranges from 1 to 5 
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TABLE 5. Continued 

Name Description Type Values 

Month At the end of each month, patients 

were asked how many cigarettes they 

smoked while additionally taking the 

drug assigned with their group. The 

data were recorded every month for 6 

months to see if the number of 

cigarettes smoked per month changed 

with the drug. 

Numeric Number of 

cigarettes smoked 

varies by month 

 

The Cigarette dataset is a simulated dataset similar in structure to the Cancer dataset 

shown in Section 3.1.3. It is a longitudinal dataset where the dependent variable models count 

data, the number of cigarettes smoked per month. The purpose of this dataset was to determine 

the effectiveness of Chantix, a prescription medicine drug developed to help people stop 

smoking, against an unknown placebo drug. The dataset contains 𝑛 = 100 simulated patients of 

varying levels of cigarette addiction, ranging from a scale 1 to 5 where 1 represents no addiction 

and 5 represents an extreme addiction to cigarettes. In this scenario, a patient with an addiction 

score of 4 or 5 would highly benefit from either seeing a doctor or receiving Chantix, as opposed 

to a patient with a score of 1. Prior to entering the study, the researchers asked the patients if they 

had any intention to stop smoking, or not. Patients with the desire to quit smoking would likely 

benefit from the study compared to those without any desire to stop smoking. Next, the patients 

were randomly assigned into either a treatment or a control group, with the treatment group 

receiving Chantix, and the control group receiving a placebo drug. Furthermore, the patients 

were asked to take one pill of the drug assigned by their group daily and monitor the number of 

cigarettes smoked. Following the patients’ cigarette use, the researchers asked each patient the 
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total amount of cigarettes they smoked at the end of each month. The number of cigarettes each 

patient smoked was recorded at the end of each month for a total of six months during the study.  

3.4.3. Application 

 In this data set, the response variable, the number of cigarettes smoked every month, 

follows a Poisson distribution. To verify that claim, we plotted the histogram of the response 

variable. 

 

FIGURE 11. Histogram of Poisson response. 

  Figure 11 depicts the histogram for the number of cigarettes smoked per month. We can 

see that the distribution resembles the Poisson probability mass function, and so we fit the 

Poisson random slope and intercept model. The output can be found in Appendix D, Table 8A. 

At the 𝛼 = 0.05 level of significance, we observed that the treatment group, level of addiction 

for patients, and the months were all deemed very significant predictors. All other predictors 

were very insignificant as they had very large P-values.  
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Thus, from the output, we can write the fitted model where the response models the number of 

cigarettes smoked every month as 

�̂� = �̂�(y) = exp(0.970 + 0.058𝑀𝑎𝑙𝑒 + 0.247𝑇𝑥 − 0.00091𝐴𝑔𝑒 − 0.00029𝑊𝑒𝑖𝑔ℎ𝑡

+ 0.090𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + 0.508𝐴𝑑𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑢𝑠 − 0.230𝑀𝑜𝑛𝑡ℎ). 

Next, we employ the deviance test to compare the model fit of the null model against the 

fitted random slope and intercept model. From the output shown in Table 7 of Appendix D, since 

the P-value was less than 0.05, we reject the null model and conclude that the fitted model fits 

the data better.  

Next, we interpret the significant estimated regression coefficients. From the fitted 

model, observe that those within the treatment group showed a exp(0.247) ∙ 100% = 128% 

decrease in cigarette consumption, more than double compared to those of the control group. 

Also, For each level increase in cigarette addiction, the estimated average total amount of 

cigarettes each patient smoked increases by (exp(0.508) − 1) ∙ 100% = 66.20%. Lastly, each 

month, the estimated average total amount of cigarettes each patient smoked changes by 

(exp(−0.23) − 1) ∙ 100% = −20.55%, that is, every month, the estimated average number of 

cigarettes smoked by each patient decreases by about 20.55%.  

 Next, our goal now is to predict the number of cigarettes smoked by a 47-year-old female 

weighing 150 lbs. This person has developed a serious nicotine addiction ever since she started 

smoking cigarettes at the age of 21 and is desperate to quit. Therefore, the researchers 

categorized her nicotine addiction as “5”, very high levels of addiction.  

From our given data, we will now predict the number of cigarettes this person smoked over the 

course of the study. 
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𝜆0 = exp(0.970 + 0.058𝑀𝑎𝑙𝑒0 + 0.247𝑇𝑥0 − 0.00091𝐴𝑔𝑒0 − 0.00029𝑊𝑒𝑖𝑔ℎ𝑡0

+ 0.090𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛0 + 0.508𝐴𝑑𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑢𝑠0 − 0.230𝑀𝑜𝑛𝑡ℎ0) 

At month 3:  𝜆0 = exp(0.970 + 0.058(0) + 0.247(1) − 0.00091(21) − 0.00029(150) +

0.090(1) + 0.508(5) − 0.230(3)) = 22.0738 cigarettes. 

At month 6:   𝜆0 = exp(0.998 − 0.066(0) − 0.001(150) − 0.058(1) + 0.00039(150) +

0.533(5) − 0.189(6) − 0.06(0)) = 11.0717 cigarettes. 

Next, we fit a generalized estimating equations model shown in Section 3.1.2. for the 

Poisson response using the autoregressive, exchangeable, independent, and unstructured working 

correlation matrices (refer to Appendix D, Tables 8B, 8C, 8D, and 8E for outputs). Since the 

output for the autoregressive had the smallest QIC value of −25573.84, we will choose the 

autoregressive model as our fitted GEE model for both our interpretation and prediction. 

Thus, from the output table (see Appendix D, Table 8B) the fitted model has the 

estimated rate   

�̂� = �̂�(y) = exp(1.351 + 0.108𝑀𝑎𝑙𝑒 − 0.42𝑇𝑥 − 0.001𝐴𝑔𝑒 − 0.00022𝑊𝑒𝑖𝑔ℎ𝑡

− 0.026𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 + 0.486𝐴𝑑𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑢𝑠 − 0.121𝑀𝑜𝑛𝑡ℎ), 

 and the estimated working correlation matrix for 𝑝 = 6 months is equal to  

�̂�𝐢(�̂� = 𝟎. 𝟔𝟑𝟓) =

(

 
 

1 �̂� �̂�2 ∙∙∙ �̂�𝑝−1

�̂� 1 �̂� ∙∙∙ �̂�𝑝−2

�̂�2 �̂� 1 ∙∙∙ �̂�𝑝−3

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
�̂�𝑝−1 �̂�𝑝−2 �̂�𝑝−3 ∙∙∙ 1 )

 
 

 

=

(

  
 

1 0.635 (0.635)2 ∙∙∙ (0.635)5

0.635 1 0.635 ∙∙∙ (0.635)4

(0.635)2 0.635 1 ∙∙∙ (0.635)3

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
(0.635)5 (0.635)4 (0.635)3 ∙∙∙ 1 )

  
 
. 
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We will now give our interpretation of the significant predictors. The estimated average 

number of cigarettes smoked by the patients within the treatment group is exp(−0.419) ∙

100% = 65.77% of those for the control group. Also, as the level of addiction increases, the 

estimated average number of cigarettes each patient smoked increases by (exp(0.486) − 1) ∙

100% = 62.58%. Finally, each month, the estimated average number of cigarettes each patient 

smoked changes by (exp(−0.121) − 1) ∙ 100% = −11.40%. That is, every month, the 

estimated average number of cigarettes smoked by each patient decreases by about 11.40%.  

Using the same example, under the autoregressive GEE model, we will now predict the 

number of cigarettes this patient will smoke at months 3 and 6. We have 

�̂�0 = exp(1.351 + 0.108𝑀𝑎𝑙𝑒0 − 0.42𝑇𝑥0 − 0.001𝐴𝑔𝑒0 − 0.00022𝑊𝑒𝑖𝑔ℎ𝑡0

− 0.026𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛0 + 0.486𝐴𝑑𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑢𝑠0 − 0.121𝑀𝑜𝑛𝑡ℎ0). 

At month 3:  𝜆0 = exp(1.351 + 0.108 ∙ 0 − 0.42 ∙ 1 − 0.001 ∙ 21 − 0.00022 ∙ 150 − 0.026 ∙

1 + 0.486 ∙ 5 − 0.121 ∙ 3) = 18.5042 cigarettes. 

At month 6: 𝜆0 = exp(1.351 + 0.108 ∙ 0 − 0.42 ∙ 1 − 0.001 ∙ 21 − 0.00022 ∙ 150 − 0.026 ∙

1 + 0.486 ∙ 5 − 0.121 ∙ 6) = 12.8713 cigarettes. 

To conclude, from month 3 to month 6, the patient is predicted to show a steady decrease 

in monthly cigarette consumption. Therefore, we conclude that Chantix would indeed be helpful 

in lowering the monthly cigarette use for this patient. 
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CHAPTER 4 

DATA MONITORING 

4.1 Background Information 

4.1.1 Determining the Length of a Clinical Trial 

In a clinical trial, the sample size is the total number of subjects enrolled in the trial. A 

larger sample size is necessary to deliver a more detailed and accurate information about the 

efficacy of the tested product. The minimum required sample size should be determined prior to 

commencement of a clinical trial. The steps that have to be followed in calculation of the 

minimum required sample size are shown below.   

Step 1: the endpoint, known as the measure of the target outcome, of a clinical trial is 

defined. There are three types of endpoints. The first endpoint is called a pre-specified 

percentage change from the baseline value of a medical measurement. The second endpoint is a 

pre-specified actual change from the baseline value in some medical characteristic. The last 

endpoint is a pre-specified rate of a certain adverse event. This is defined as the ratio between the 

total number of events and the total trial time for all subjects. 

Step 2: To model the endpoint, a certain family of distributions is used, where its 

parameters are estimated from the data.  

Step 3: The null and alternative hypotheses for the endpoint are identified. The type of 

hypothesis test (two-tailed, left-tailed, or right-tailed) used depends on the nature of the 

experiment.  

Step 4: The probability of a type I error, known as the significance level of the test, is 

determined. The probability of type I error is the probability of accepting the alterative 

hypothesis 𝐻1, given the null hypothesis 𝐻0 is true.  
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Step 5: The probability of a type II error along with the minimum detectable difference, if 

appropriate, is determined. The probability of a type II error is the probability of failing to reject 

𝐻0 when a specific alternative hypothesis is true. For instance, 𝐻1: 𝜇𝑡 − 𝜇𝑐 = 𝛿 is true, where 𝛿 

is the minimum detectable difference between the mean responses in the two groups.  

Within the clinical trial setting, a power function of a test (i.e., 1 − 𝛽) is frequently used 

to determine the probability of rejecting the null hypothesis, given that the alternative is valid.  

We will now present a numeric example illustrating the power analysis to determine the 

required sample size when two means are compared. To determine the required sample size for 

the test of 𝐻0: 𝜇𝑡 = 𝜇𝑐 against 𝐻0: 𝜇𝑡 > 𝜇𝑐 , we assume that �̅�𝑡~𝑁(𝜇𝑡,
𝜎2

𝑛
) and  �̅�𝑐~𝑁(𝜇𝑐,

𝜎2

𝑛
). 

We also assume that 𝜎 is known (from previous studies, says), and that the probabilities of type I 

and type II errors, respectively 𝛼 and 𝛽, are pre-determined. The value of 𝛽 is given for a 

specific alternative 𝐻0: 𝜇𝑡 − 𝜇𝑐 = 𝛿 where 𝛿 is fixed. Therefore, under the null hypothesis  

𝑍 =
�̅�𝑡−�̅�𝑐

𝜎√
2

𝑛

~𝑁(0,1) , and we can write the acceptance region for the null hypothesis as  

{𝑍 < 𝑘} = {
�̅�𝑡−�̅�𝑐

𝜎√
2

𝑛

< 𝑘} = {�̅�𝑡 − �̅�𝑐 < 𝑘𝜎√
2

𝑛
} for some critical value 𝑘. On the other hand, if a 

specific alternative 𝐻1: 𝜇𝑡 − 𝜇𝑐 = 𝛿 holds, then  �̅�𝑡 − �̅�𝑐~𝑁 (𝛿, 2
𝜎2

𝑛
).  

Further, the values of  𝑘 and 𝑛 can be found from the equations for the probabilities of type I and 

type II errors. The equations are: 

i. 1 − 𝛼 = 𝑃(𝑍 < 𝑘|𝑍~𝑁(0,1)) = Φ(𝑘) 

and 
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ii. 𝛽 = 𝑃 (�̅�𝑡 − �̅�𝑐 < 𝑘𝜎√
2

𝑛
|�̅�𝑡 − �̅�𝑐~𝑁 (𝛿,

2𝜎2

𝑛
)) = Φ(𝑘 −

𝛿

𝜎√
2

𝑛

) 

where Φ is defined as the cumulative distribution function of a standard normal distribution.  

From the first equation, the critical value of the acceptance region 𝑘 = Φ−1(1 − 𝛼). Substituting 

it into the second equation yields 

 Φ−1(𝛽) = 𝑘 −
𝛿

𝜎√
2
𝑛

= Φ−1(1 − 𝛼) −
𝛿

𝜎√
2
𝑛

 . 

Solving for 𝑛 we obtain the required sample size (per group),  

𝑛 = 2 (
𝜎

𝛿
)
2

(Φ−1(1 − 𝛼)−Φ−1(𝛽))
2
. 

In practice, 𝑛 should be taken as the smallest integer exceeding this calculated value, that is,  

𝑛 = ⌈2 (
𝜎

𝛿
)
2

(Φ−1(1 − 𝛼)−Φ−1(𝛽))
2
⌉ , 

which results in the probability of a Type II error being slightly smaller than the specified value.  

To give a numeric example, suppose 𝜎 = 17.4, 𝛼 = 0.05,  𝛽 = 0.25, and 𝛿 = 8.  

Plugging the values into the above expression yields the required sample size per group, 

𝑛 = ⌈2 (
17.4

8
)
2

(Φ−1(1 − 0.05)−Φ−1(0.25))
2
⌉ = ⌈50.89541⌉ = 51.  That is, 51 patients should 

be enrolled in each group in the clinical trial to achieve the power of the test of at least 1 − 𝛽 =

0.75. The actual probability of type II error in this case will be 

𝛽′ = Φ

(

 Φ−1(0.95) −
8

17.4√
2
51)

 = 0.249244, 

and thus, the actual power of the test will be 1 − 𝛽 = 0.750756. 
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4.1.2 Interim Data Monitoring 

 Interim data monitoring in clinical trials is a type of data analysis performed while the 

trial is still in progress to determine if the trial should continue or not. A clinical trial might be 

terminated earlier if there is enough evidence to justify the claim that a tested product is either 

superior, or worse than its standard counterpart. The decision on either to conduct a full-length 

trial of the product’s efficacy or stop early is determined by the amount of confidence the 

researchers have in the tested product. If the researchers have high confidence in the product’s 

ability to succeed, interim data monitoring is an appropriate solution because there is a high 

chance of early termination of the trial. Below, we present two major statistical methods for 

calculating interim sample sizes.  

4.1.3 Classical Group Sequential Testing 

 Classical group sequential testing is used in a randomized trial involving two groups 

(treatment and control). The procedure is as follows. 

 Once data for  𝑛 subjects in each group become available, an interim analysis is 

conducted on the 2𝑛 subjects. From there, the two groups are compared statistically. If the null 

hypothesis 𝐻0 is rejected in favor of the alternative 𝐻1, then the trial is terminated, and the 

conclusion is achieved. On the other hand, if the null 𝐻0 is kept, then the trial continues until data 

for another set of 2𝑛 subjects become available. Then a statistical test on 4𝑛 subjects is 

conducted. Similarly, if the alternative hypothesis 𝐻1 is accepted, then the trial is terminated. 

Otherwise, the trial repeats continuously with periodic evaluations until 𝑁 sets of 2𝑛 subjects 

become available and will terminate once the null hypothesis is rejected, favoring the alternative.  

 For each of the 𝑁 interim statistical tests, we denote the probability of type I error by  𝛼′. 

The number of interim tests 𝑁 must be determined a priori. Therefore 𝛼′ and 𝑛 can be found if 
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the overall probabilities of type I and type II errors, 𝛼 and 𝛽, respectively, are specified. They 

solve the equations: 

i. 𝑃(at least one interim test rejects 𝐻0 |  𝐻0 is true) = 𝛼 

ii. 𝑃(at least one interim test accepts 𝐻1  |𝐻1 is true) = 1 − 𝛽. 

 We will now present an example illustrating sequential testing. Recall from the power analysis 

example discussed previously, our null and alternative hypotheses of interest are specified as                                

𝐻0: 𝜇𝑡 = 𝜇𝑐 vs. 𝐻1: 𝜇𝑡 − 𝜇𝑐 =  𝛿 where our stated parameters are 𝛼 = 0.05, 𝛽 = 0.25, 𝛿 = 8, 

and 𝜎 = 17.4 (see Section 4.1.1). For this test to be conducted, an estimated sample size of 𝑛′ =

51 patients per group is required.  

 Now, suppose we consider a group sequential case with 𝑁 = 2, meaning that we test at 

most two times, first time on  2𝑛 subjects (𝑛 subjects per group), the second time, if needed, we 

test on 4𝑛 subjects (2𝑛 subjects per group). To show how this testing works, we introduce 

�̅�𝑡
(𝑖)
 and �̅�𝑐

(𝑖)
 as the respective group sample means in the 𝑖th set of 2𝑛 subjects, 𝑖 = 1, 2. Now, 

denote by 

�̅�𝑡 =
�̅�𝑡
(1)
+�̅�𝑡

(2)

2
 and  �̅�𝑐 =

�̅�𝑐
(1)
+�̅�𝑐

(2)

2
 the group sample means in the combined set of 4𝑛 subjects. 

We perform the first statistical test of 𝐻0 against 𝐻1 at significance level 𝛼′ on the initial set of 

2𝑛 subjects where, under the null hypothesis, �̅�𝑡
(1) − �̅�𝑐

(1)~𝑁 (0,
2𝜎2

𝑛
) with the probability of the 

acceptance region equal to 1 − 𝛼′ = 𝑃(
�̅�𝑡
(1)
−�̅�𝑐

(1)

√2𝜎
2

𝑛

< 𝑘) = Φ(𝑘). Thus, if we know the critical 

value 𝑘, we can compute 𝛼′ = 1 − Φ(𝑘).  

If the trial is not stopped at the first testing, it continues until  4𝑛 subjects are accrued. The 

difference in sample means for the set of 4𝑛 subjects can be calculated as  
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�̅�𝑡 − �̅�𝑐 =
�̅�𝑡
(1) + �̅�𝑡

(2)

2
−
�̅�𝑐
(1) + �̅�𝑐

(2)

2
=
�̅�𝑡
(1) − �̅�𝑐

(1)

2
+
�̅�𝑡
(2) − �̅�𝑐

(2)

2
 . 

Since   
�̅�𝑡
(1)
−�̅�𝑐

(1)

2
~𝑁 (0,

𝜎2

2𝑛
) and 

�̅�𝑡
(2)
−�̅�𝑐

(2)

2
~𝑁 (0,

𝜎2

2𝑛
), we deduce that  �̅�𝑡 − �̅�𝑐~𝑁 (0,

𝜎2

𝑛
). We want 

the acceptance region for the second test also have the critical value 𝑘 (and thus, the significance 

level 𝛼′). From the definitions of 𝛼 and 𝛽, we can specify two equations for 𝑘 and 𝑛 as  

1 − 𝛼 = 𝑃

(

 
�̅�𝑡
(1) − �̅�𝑐

(1)

√2𝜎
2

𝑛

< 𝑘,
 �̅�𝑡 − �̅�𝑐

√𝜎
2

𝑛

< 𝑘 

)

  

where �̅�𝑡
(1) − �̅�𝑐

(1)~𝑁(0,
2𝜎2

𝑛
) and �̅�𝑡 − �̅�𝑐~𝑁 (0,

𝜎2

𝑛
), and 

𝛽 = 𝑃

(

 
�̅�𝑡
(1) − �̅�𝑐

(1)

√2𝜎
2

𝑛

< 𝑘,
 �̅�𝑡 − �̅�𝑐

√𝜎
2

𝑛

< 𝑘 

)

  

where �̅�𝑡
(1) − �̅�𝑐

(1)~𝑁(𝛿,
2𝜎2

𝑛
) and �̅�𝑡 − �̅�𝑐~𝑁 (𝛿,

𝜎2

𝑛
). 

The former equation above can be simplified to 

1 − 𝛼 = ℙ(𝑍1 < 𝑘, 𝑍1 + 𝑍2 < 𝑘√2 ) 

where 𝑍1 =
�̅�𝑡
(1)
−�̅�𝑐

(1)

√2𝜎
2

𝑛

 and 𝑍2 =
 �̅�𝑡
(2)
−�̅�𝑐

(2)

√2𝜎
2

𝑛

 specify the random variables, which are independent and 

follow a standard normal distribution. The latter equation becomes 

𝛽 = 𝑃

(

 𝑍3 +
𝛿

√2𝜎
2

𝑛

< 𝑘, 𝑍3 + 𝑍4 +
2𝛿

√2𝜎
2

𝑛

< 𝑘√2 

)

  

where 𝑍3 =
�̅�𝑡
(1)
−�̅�𝑐

(1)
−𝛿

√2𝜎
2

𝑛

 and 𝑍4 =
�̅�𝑡
(2)
−�̅�𝑐

(2)
−𝛿

√2𝜎
2

𝑛

 are independent standard normal random variables.  
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These equations have to be solved numerically for specific values of 𝛼 and 𝛽. Going back to our 

example (see Section 4.1.1), we specify  𝜎 = 17.4, 𝛼 = 0.05,  𝛽 = 0.25, and 𝛿 = 8.   Writing 

these equations as double integrals, we obtain 

0.95 = ∫ ∫
1

2𝜋
𝑒−
(𝑧1
2+𝑧2

2)
2 𝑑𝑧2𝑑𝑧1 = ∫ 𝜙(𝑧)Φ(𝑘√2 − 𝑧)𝑑𝑧

𝑘

−∞

 ,
𝑘√2−𝑧1

−∞

𝑘

−∞

 

and 

0.25 = ∫ ∫
1

2𝜋
𝑒−
(𝑧1
2+𝑧2

2)
2 𝑑𝑧2𝑑𝑧1 =

𝑘√2−
𝛿√2𝑛
𝜎

−𝑧1

−∞

𝑘−
𝛿√𝑛

√2𝜎

−∞

∫ 𝜙(𝑧)Φ(𝑘√2 −
𝛿√2𝑛

𝜎
− 𝑧)𝑑𝑧

𝑘−
𝛿√𝑛

√2𝜎

−∞

 

where 𝜙 and Φ denote the pdf and cdf of a standard normal distribution, respectively. 

Solved numerically (see Appendix E), 𝑘 = 1.88 which corresponds to 𝛼′ = 1 −

Φ(1.88) = 0.03005404,  and 𝑛 = 28.66759 or, rounding up, 𝑛 = 29 subjects.  

In conclusion, the interim group size is 29 patients, meaning that instead of accruing 51 

patients in each group and testing the null and alternative hypotheses at the 𝛼 = 0.05 level of 

significance, the group sequential method with 𝑁 = 2 dictates that investigators test the 

hypotheses with 𝑛 = 29 subjects per group at the 𝛼′ = 0.03 level of significance. If the first test 

is inconclusive, a second test using the same level of significance 𝛼′ with a group size of 2𝑛 =

58 subjects is imposed.  

 An advantage of using sequential testing is that there is a good chance of stopping the 

trial earlier. If researchers have strong confidence that a certain product could succeed, they 

would likely choose the sequential testing method as there is a good chance of stopping the trial 

after data have been collected and analyzed for 𝑛 = 29 subjects, rather than waiting until 51 

subjects are accrued for nonsequential testing. However, a disadvantage of using sequential 

testing is that if a product does worse than expected, the trial must continue until 2𝑛 = 58 
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subjects are accrued for each group. Consequently, resulting in a trial longer than that of the 

nonsequential monitoring (51 subjects).  

 The example we presented illustrates sequential testing for 𝑁 = 2. A larger number of 

tests may be used. Then the quantities  𝑘 and 𝑛 can be found as numeric solutions of two 

equations: 

1 − 𝛼 = 𝑃 (⋂{𝑍1 +⋯+ 𝑍𝑚 < 𝑘√𝑚}

𝑁

𝑚=1

) 

and  

𝛽 = 𝑃

(

 ⋂

{
 

 

𝑍1 +⋯+ 𝑍𝑚 +
𝑚 𝛿

√2𝜎
2

𝑛

< 𝑘√𝑚

}
 

 𝑁

𝑚=1
)

  

where 𝑍1, … , 𝑍𝑁 denote independent 𝑁(0,1) random variables. 

4.2 Bayesian Sequential Procedure 

4.2.1 Bayes Theorem  

 Define a partition of a sample space 𝑆 as the union of mutually exclusive events. Assume 

that for some positive integer 𝑘, the events 𝐵1, 𝐵2, … , 𝐵𝑘 satisfy two conditions: 

i. S = 𝐵1⋃𝐵2⋃. . . ⋃𝐵𝑘 (their union is all of the sample space), and  

ii. 𝐵𝑖⋂𝐵𝑗 = ∅ for 𝑖 ≠ 𝑗 (they are mutually exclusive). 

Consider an event 𝐴, and suppose we know the probabilities 𝑃(𝐵𝑖), 𝑖 = 1,… , 𝑘, of each of the 

event in the partition, and each conditional probability 𝑃(𝐴| 𝐵𝑖), 𝑖 = 1,… , 𝑘, of 𝐴 occurring, 

given each of the event in the partition. Suppose the event 𝐴 has occurred. Then, the probabilities 

of 𝐵𝑗  for each fixed 𝑗, 𝑗 = 1,… , 𝑘, can be updated according to the Bayes’ formula: 
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𝑃(𝐵𝑗|𝐴) =
𝑃(𝐴⋂𝐵𝑗)

𝑃(𝐴)
=

𝑃(𝐴|𝐵𝑗)𝑃(𝐵𝑗)

∑ 𝑃(𝐴|𝐵𝑖)𝑃(𝐵𝑖)
𝑘
𝑖=1

. 

4.2.2 Prior and Posterior Distributions 

 Bayesian statistics is the system for describing uncertainty of a future event using the 

mathematical language of probability. Under the scenario of uncertainty, Bayesians would start 

with their existing beliefs, known as priors, and update their priors using data analysis to give 

posterior beliefs. These posterior beliefs can then be used for decisions.  

In the setting of Bayesian statistics, to estimate the parameters of interest, one would need 

to have some prior knowledge of the experiment. This knowledge is modeled as a distribution 

incorporating a Bayesian’s subjective beliefs about the unknown parameter 𝜃 prior to examining 

the data. After gathering the data, the prior distribution is updated using Bayes’ theorem to 

obtain the posterior distribution which is basically a probability distribution that represents the 

updated beliefs about the estimated parameters after observing the data. The posterior density 

function is derived as follows. 

 Assume the data are represented by a random vector 𝑿 = (𝑋1, … , 𝑋𝑛) from a probability 

distribution that depends on an unknown parameter 𝜃 ∈ Ω that needs to be estimated. Knowing 

that 𝜃 is a fixed parameter, Bayesians model it as a random variable Θ that follows a certain prior 

probability distribution over the set Ω. We write the prior pdf of Θ as 𝜋(𝜃),  𝜃 ∈ Ω.  

Next, we assume that the variables 𝑋1, … , 𝑋𝑛 are independent, and have identical pdf 𝑓(𝑥|𝜃), 

given Θ = 𝜃. The likelihood function of 𝑋1, … , 𝑋𝑛, given Θ = θ, can be written as  

𝐿(𝑥1, 𝑥2, … , 𝑥𝑛|𝜃) = 𝑓(𝑥1|𝜃) ∙ 𝑓(𝑥2|𝜃) ∙∙∙ 𝑓(𝑥𝑛|𝜃) =∏ 𝑓(𝑥𝑖|𝜃).
𝑛

𝑖=1
 

In this notation, the conditional pdf of Θ given data 𝑥1, … , 𝑥𝑛 is equal to 
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𝑓Θ(𝜃 | 𝑥1, … , 𝑥𝑛) =
𝐿(𝑥1, 𝑥2, … , 𝑥𝑛|𝜃) ∙ 𝜋(𝜃)

∫ 𝐿(𝑥1, 𝑥2, … , 𝑥𝑛|𝜃) ∙ 𝜋(𝜃)𝑑𝜃
 

Ω

=
∏ 𝑓(𝑥𝑖|𝜃)
𝑛
𝑖=1 ∙ 𝜋(𝜃)

∫ ∏ 𝑓(𝑥𝑖|𝜃)
𝑛
𝑖=1 ∙ 𝜋(𝜃)𝑑𝜃

 

Ω

 . 

This is called the posterior distribution of Θ since it represents our knowledge about the 

parameter Θ after observing the data. Note that the posterior distribution is proportional to the 

product of the likelihood function and the prior distribution: 

𝑓Θ(𝜃 | 𝑥1, … , 𝑥𝑛) ∝ 𝐿(𝑥1, 𝑥2, … , 𝑥𝑛|𝜃) ∙ 𝜋(𝜃). 

The proportionality is defined as equality up to a multiplicative normalizing constant 

(∫ 𝐿(𝑥1, 𝑥2, … , 𝑥𝑛|𝜃) ∙ 𝜋(𝜃)𝑑𝜃
 

Ω
)
−1

, not depending on 𝜃.  

  Within a clinical trial setting, a Bayesian sequential procedure is used to model the 

clinical endpoint as a random variable Θ where the prior density of Θ,  𝜋(𝜃) = 𝑓Θ(𝜃), can be 

chosen in multiple ways. If there is strong belief that a tested product would succeed, an 

enthusiastic prior is chosen. An enthusiastic prior assumes that an alternative hypothesis (i.e.,  

𝐻1: Θ ∈ Ω1) is more likely to hold than the null hypothesis (i.e., 𝐻0: Θ ∈ Ω0) where Ω0 and Ω1 

partition Ω. Alternatively, if researchers are skeptical about the tested product and assume that  

𝑃(𝐻1) ≤ 𝑃(𝐻0), then a skeptical prior can be used to model a prior distribution. 

 To use the Bayesian inference, we first compute the posterior density of Θ given the data 

are observed. From the Bayes’ theorem, the posterior density is equal to  

𝑓Θ(𝜃|𝑑𝑎𝑡𝑎) =
𝑓(𝑑𝑎𝑡𝑎|Θ = 𝜃)𝜋(𝜃)

∫ 𝑓(𝑑𝑎𝑡𝑎|Θ = 𝜃)𝜋(𝜃)𝑑𝜃
 

Ω

. 

 Finally, to arrive at the decision of either rejecting or accepting (failing to reject) the null 

hypothesis, the posterior probability of the null hypothesis is calculated as 

𝑃(𝐻0|𝑑𝑎𝑡𝑎) = ∫ 𝑓Θ(𝜃|𝑑𝑎𝑡𝑎)𝑑𝜃,
 

Ω0

 

and the decision is made according to the following rule: 
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i. If 𝑃(𝐻1|𝑑𝑎𝑡𝑎) < 0.05, the trial is stopped and the product is not marketed. 

ii. If 𝑃(𝐻1|𝑑𝑎𝑡𝑎) > 0.95, the trial is stopped and the product is marketed. 

iii. If 0.05 ≤ 𝑃(𝐻1|𝑑𝑎𝑡𝑎) ≤ 0.95, the trial continues.  

4.2.3 Comparing Conjugate vs. Nonconjugate Priors 

Note that in the expression for the posterior density, calculating the denominator is a 

computationally-intensive task. To avoid it, it is often convenient to use conjugate priors, priors 

chosen in such a way that the posterior density would have the same algebraic form as the prior. 

It is a very cost-efficient approach since in this case there is no need to calculate the integral (the 

normalizing constant). Conjugate priors come from a class of priors that are conjugate to the 

class of likelihood functions. That is, being conjugate is a class property. Below we will consider 

some concrete examples of conjugate priors.  

Alternatively, nonconjugate priors can be considered. In some situations, for instance, 

researchers don’t possess any prior knowledge about the parameter, so using a uniform prior 

would be advisable.  In effect, using a nonconjugate prior would mean letting the likelihood 

function of the observed data play a major role in forming the posterior distribution. If for 

example, a new medication was tested in animals only, and there is no prior knowledge if in 

humans it performs better or worse, then the correct approach would be to rely on a prior 

distribution that may appropriately shape the posterior distribution. 

Below, we present examples using Poisson, normal, and binomial distributions for the 

data in clinical settings, and compare the use of conjugate and nonconjugate priors for the 

parameters. 
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4.3 Poisson Inference 

4.3.1. Poisson-Gamma Example 

 A clinical trial is conducted to test the performance of a new heart valve where the 

endpoint of the trial is the rate of certain valve-related complication. The rate of a complication 

is defined as the total number of cases divided by the total amount of years accumulated by all 

patients in the trial. This is known as “patient-years”. For example, if there were 9 cases in 500 

patient years, then the rate of complication would be 0.018 or 1.8%. From this example, the 

complication rate 𝑅 for the new heart valve was compared to its historic value of 𝑅ℎ = 0.012. 

The primary endpoint is an endpoint that is used in power analysis to pre-determine the required 

sample size of a trial. From all possible valve-related complications, endocarditis (inflammation 

of heart lining) is chosen as the primary endpoint because it is the rarest and takes the longest 

time to be detected.  

 Next, we perform a hypothesis test to determine if the new valve performed better or 

worse than the historical one. We specify the null hypothesis, indicating that the new valve 

performed worse than the historic one, as 𝐻0: 𝑅 ≥ 2𝑅ℎ = 0.024 against the alternative 

hypothesis 𝐻1: 𝑅 < 2𝑅ℎ = 0.024. If the null hypothesis is not rejected, then we arrive at the 

conclusion that the new valve performed worse than the historic one and should not be used.  

 An assumption is made that the number of endocarditis events (specified as 𝑁) during 

time 𝑇 follows a Poisson distribution with mean 𝜆 = 𝑅𝑇 and probability mass function 

𝑃(𝑁 = 𝑛) =
(𝑅𝑇)𝑛𝑒−𝑅𝑇

𝑛!
, 𝑛 = 0,1,2…. 

Now we model 𝑅 as a random variable, and choose a prior distribution from the class of 

distributions that is conjugate to the class of Poisson distributions. To this end, we view the 
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above probability mass function as a function of 𝑅 and note that it has the algebraic form of a 

gamma distribution. It means that gamma priors are conjugate to Poisson likelihood functions. 

We specify the prior distribution of 𝑅 as  Γ(𝛼, 𝛽) with density 

𝜋(𝑟) =
𝑟𝛼−1exp (−

𝑟
𝛽
)

Γ(𝛼)𝛽𝛼
,   𝑟, 𝛼, 𝛽 > 0. 

It is not difficult to deduce that the posterior distribution of 𝑅 given that n endocarditis 

evens have been observed during time 𝑡 is again a gamma distribution with parameters  𝑛 +

𝛼  and (𝑡 +
1

𝛽
)
−1

. We show the derivation below.   

𝑓𝑅(𝑟|𝑛, 𝑡)   ∝ 𝑓(𝑡, 𝑛|𝑟)𝜋(𝑟) =
(𝑟𝑡)𝑛𝑒−𝑟𝑡

𝑛!
 ∙
𝑟𝛼−1 exp(−

𝑟

𝛽
)

Γ(𝛼)𝛽𝛼
∝ 𝑟𝑛+𝛼−1𝑒

−𝑟𝑡−
𝑟

𝛽 = 𝑟(𝑛+𝛼)−1𝑒
−𝑟/(𝑡+

1

𝛽
)−1

 , 

which is the algebraic form of the gamma distribution with the said parameters.  

Next, the posterior probability that the alternative hypothesis 𝐻1 is correct is computed as 

𝑃(𝐻1|𝑑𝑎𝑡𝑎) = 𝑃(𝑅 < 0.024|𝑛, 𝑡) = ∫ 𝑓𝑅(𝑟|𝑛, 𝑡)𝑑𝑟
0.024

0

 

=
(𝑡 +

1
𝛽
)
𝑛+𝛼

Γ(𝑛 + 𝛼)
∫ 𝑟𝑛+𝛼−1 ∙ exp(−𝑟 (𝑡 +

1

𝛽
))𝑑𝑟.

0.024

0

 

 The decision to accept or reject the alternative hypothesis is based on the following 

criterion. If 𝑃(𝐻1|𝑑𝑎𝑡𝑎) < 0.05, the alternative hypothesis is rejected. On the other hand, if 

𝑃(𝐻1|𝑑𝑎𝑡𝑎) > 0.95, the alternative hypothesis is accepted. Otherwise, the trial continues.  

 To specify the parameters 𝛼, 𝛽, we note that the gamma density is unimodal and right-

skewed, meaning there is one peak and a long right tail. For these distributions, the mean, 

median, mode inequality holds in the form 𝑚𝑜𝑑𝑒 < 𝑚𝑒𝑑𝑖𝑎𝑛 < 𝑚𝑒𝑎𝑛. This implies that 

𝑃(𝑅 < 𝑚𝑜𝑑𝑒) < 𝑃(𝑅 < 𝑚𝑒𝑑𝑖𝑎𝑛) < 𝑃(𝑅 < 𝑚𝑒𝑎𝑛), or since 𝑃(𝑅 < 𝑚𝑒𝑑𝑖𝑎𝑛) = 0.5 by 
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definition, we obtain 𝑃(𝑅 < 𝑚𝑜𝑑𝑒) < 0.5 < 𝑃(𝑅 < 𝑚𝑒𝑎𝑛). From our example mentioned 

previously, if investigators wanted to use enthusiastic prior, they would set the mean of the prior 

distribution equal to 0.024. From the mean, this gives them the opportunity to specify any 

desired prior probability of the true 𝐻1 larger than 0.5. Thus, the probability of the accepting the 

true alternative hypothesis can be written as 0.5 < 𝑃(𝑅 < 𝑚𝑒𝑎𝑛) = ℙ(𝑅 < 0.024) = 𝑃(𝐻1). 

On the contrary, if the researchers wanted to impose a skeptical prior, they would set the mode of 

the prior distribution equal to 0.024, resulting in 𝑃(𝐻1) = 𝑃(𝑅 < 0.024) = 𝑃(𝑅 < 𝑚𝑜𝑑𝑒) <

0.5, and so 𝑃(𝐻1) can take on any value below 0.5.  

 The gamma distribution with parameters 𝛼, 𝛽 has a mean equal to 𝛼𝛽 and mode equal to 

(𝛼 − 1)𝛽. From the information, the parameters 𝛼 and 𝛽 are computed numerically from the 

equations: 

𝛼𝛽 = 0.024 (𝐸𝑛𝑡ℎ𝑢𝑠𝑖𝑎𝑠𝑡𝑖𝑐 𝑝𝑟𝑖𝑜𝑟), 

(𝛼 − 1)𝛽 = 0.024 (𝑆𝑘𝑒𝑝𝑡𝑖𝑐𝑎𝑙 𝑝𝑟𝑖𝑜𝑟), 

and 

 𝑃(𝐻1) = 𝑃(𝑅 < 0.024) = ∫ 𝜋(𝑟)𝑑𝑟 = ∫
𝑟𝛼−1exp (−

𝑟

𝛽
)

Γ(𝛼)𝛽𝛼
𝑑𝑟

0.024

0

0.024

0
 = value specified by the 

researchers. 

 To give a numeric example, suppose the researchers used a skeptical prior, where the 

probability of the true alternative is specified as 𝑃(𝐻1) = 0.3, then the parameters 𝛼 and 𝛽 of the 

prior density satisfy the equations 

(𝛼 − 1)𝛽 = 0.024, and 

0.3 = ∫
𝑟𝛼−1exp (−

𝑟
𝛽
)

Γ(𝛼)𝛽𝛼
𝑑𝑟.

0.024

0
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After the parameters are evaluated, we will be looking for n such that the posterior probability of 

the alternative      

𝑃(𝐻1|𝑑𝑎𝑡𝑎) = 𝑃(𝑅 < 0.024|𝑛, 𝑡) = ∫ 𝑓𝑅(𝑟|𝑛, 𝑡)𝑑𝑟
0.024

0

 

=
(𝑡 +

1
𝛽
)
𝑛+𝛼

Γ(𝑛 + 𝛼)
∫ 𝑟𝑛+𝛼−1 ∙ exp (−𝑟 (𝑡 +

1

𝛽
))𝑑𝑟

0.024

0

 

is either less than 0.05 or greater than 0.95. The results of the Bayesian stopping rules are shown 

in Section 4.2.3.  

4.3.2. Poisson Inverse-Gamma Example 

Now, let us assume a nonconjugate prior distribution chosen from a family of 

distributions similar to Poisson. In this case, that would be the inverse-gamma distribution where 

the prior distribution of 𝑅 is specified respectively as  Γ−1(𝛼, 𝛽) with density 𝜋(𝑟) =

𝛽𝛼

Γ(𝛼)
𝑟−𝛼−1 exp (−

𝛽

𝑟
) , 𝑟, 𝛼, 𝛽 > 0. From the prior distribution, the posterior distribution of 𝑅 

given that n endocarditis evens have been observed within 𝑡 patient-years yields a density 

function that is derived as follows.  

𝑓𝑅(𝑟|𝑛, 𝑡)   ∝ 𝑓(𝑡, 𝑛|𝑟)𝜋(𝑟) =
(𝑟𝑡)𝑛𝑒−𝑟𝑡

𝑛!
 ∙
𝛽𝛼 𝑟−𝛼−1 exp (−

𝛽
𝑟
)

Γ(𝛼)
∝ 𝑟𝑛−𝛼−1𝑒−𝑟𝑡−

𝛽
𝑟 . 

Since this posterior density is not of a recognizable algebraic form, we need to compute 

the normalizing constant. That is, we need to calculate the entire expression 

𝑓𝑅(𝑟|𝑛, 𝑡) =
𝑟𝑛−𝛼−1 𝑒−(𝑟𝑡+𝛽/𝑟)

∫ 𝑟𝑛−𝛼−1 𝑒−(𝑟𝑡+𝛽/𝑟)𝑑𝑟
∞

0

  . 

Next, the posterior probability that the alternative hypothesis 𝐻1 is correct is computed as 
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𝑃(𝐻1|𝑑𝑎𝑡𝑎) = 𝑃(𝑅 < 0.024|𝑛, 𝑡) = ∫ 𝑓𝑅(𝑟|𝑛, 𝑡)𝑑𝑟
0.024

0

 

=
∫ 𝑟𝑛−𝛼−1 𝑒−(𝑟𝑡+𝛽/𝑟) 𝑑𝑟
0.024

0

∫ 𝑟𝑛−𝛼−1 𝑒−(𝑟𝑡+𝛽/𝑟)𝑑𝑟
∞

0

 . 

 The inverse-gamma distribution with parameters 𝛼, 𝛽 has a mean equal to 
𝛽

𝛼−1
 and mode 

equal to 
𝛽

𝛼+1
. From this information, the parameters 𝛼 and 𝛽 are estimated from the equations 

shown below as 

𝛽

𝛼 − 1
= 0.024 (𝐸𝑛𝑡ℎ𝑢𝑠𝑖𝑎𝑠𝑡𝑖𝑐 𝑝𝑟𝑖𝑜𝑟), 

𝛽

𝛼 + 1
= 0.024 (𝑆𝑘𝑒𝑝𝑡𝑖𝑐𝑎𝑙 𝑝𝑟𝑖𝑜𝑟), 

and  

𝑃(𝐻1) = 𝑃(𝑅 < 0.024) = ∫ 𝜋(𝑟)𝑑𝑟 = ∫
𝛽𝛼

Γ(𝛼)
𝑟−𝛼−1 exp (−

𝛽

𝑟
)𝑑𝑟

0.024

0

0.024

0
 where 𝑃(𝐻1) is 

specified by the researchers. 

 To give a numeric example, suppose the researchers used a skeptical prior, where the 

probability of the true alternative is specified as 𝑃(𝐻1) = 0.3, then the parameters 𝛼 and 𝛽 of the 

prior density satisfy the equations. 

𝛽

𝛼 + 1
= 0.024   and  

0.3 = ∫
𝛽𝛼

Γ(𝛼)
𝑟−𝛼−1 exp (−

𝛽

𝑟
) 𝑑𝑟 .

0.024

0

 

After 𝛼 and 𝛽  are calculated, we will be looking for n such that the posterior probability of the 

alternative   𝑃(𝐻1|𝑑𝑎𝑡𝑎) = 𝑃(𝑅 < 0.024|𝑛, 𝑡) = ∫ 𝑓𝑅(𝑟|𝑛, 𝑡)𝑑𝑟
0.024

0
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=
∫ 𝑟𝑛−𝛼−1 𝑒

−(𝑟𝑡+
𝛽
𝑟
)
 𝑑𝑟

0.024

0

∫ 𝑟𝑛−𝛼−1 𝑒
−(𝑟𝑡+

𝛽
𝑟
)
𝑑𝑟

∞

0

 

is either less than 0.05 or greater than 0.95. The results are shown in Section 4.4.3. 

4.3.3. Poisson Conjugate vs. Nonconjugate Stopping Results 

 According to FDA, the minimum length of the trial without the Bayesian monitoring is 

800 patient-years (Grunkemeier, G.L., Johnson, D.M., & Naftel, D.C. 1994). To illustrate how 

the Bayesian approach works in this case, we suppose that the investigators decide to conduct 

interim Bayesian analyses at 𝑡 = 400, 500, and 600 patient-years. For each value of 𝑡, we 

compute the required sample size 𝑛, for which the posterior probability of the true alternative is 

below 0.5 or above 0.95. These are the stopping values for the analyses. In the tables below, we 

present numerical values for the conjugate case (gamma prior) and nonconjugate case (inverse-

gamma prior).  

TABLE 6. Results of Bayesian Monitoring in Poisson-Gamma Example 

t n 𝑃(𝐻1|𝑛, 𝑡) t n 𝑃(𝐻1|𝑛, 𝑡) 

400 3  

4 

5 

0.97713 

0.94766 

0.89733 

400 14 

15 

16 

0.07695 

0.04573 

0.02592 

500 5 

6 

7 

0.97127 

0.94193 

0.89535 

500 16 

17 

18 

0.11349 

0.07319 

0.04529 
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TABLE 6. Continued 

t n 𝑃(𝐻1|𝑛, 𝑡) t n 𝑃(𝐻1|𝑛, 𝑡) 

600 7 

8 

9 

0.96708 

0.93866 

0.89562 

600 19 

20 

21 

0.10411 

0.06882 

0.04388 

 

From the results of Table 6, at 400 patient-years, if 𝑛 ≤ 3, the trial is stopped, and the 

heart valve is marketed; furthermore, if 𝑛 ≥ 15, the trial is stopped, and valve is not marketed. 

On the other hand, if 4 ≤ 𝑛 ≤ 14, the trial continues until 500 patient-years are accrued. At 500 

patient-years, if 𝑛 ≤ 5, the trial is stopped, and the heart valve is marketed; additionally, if 𝑛 ≥

18, the trial is stopped, and the valve is not marketed. Nonetheless, if 6 ≤ 𝑛 ≤ 17, the trial 

continues until 600 patient-years are accrued. At 600 patient-years, if 𝑛 ≤ 7, the trial ends and 

the valve is marketed; moreover, if 𝑛 ≥ 21, the trial concludes, and the valve fails to be 

marketed. Otherwise, if 8 ≤ 𝑛 ≤ 20, the trial continues until 800 patient-years, when it is 

eventually stopped and the maximum-likelihood test is carried out. 

TABLE 7. Results of Bayesian Monitoring in Poisson-Inverse Gamma Example 

t n 𝑃(𝐻1|𝑛, 𝑡) t n 𝑃(𝐻1|𝑛, 𝑡) 

400 1 

2 

3 

0.96892 

0.94761 

0.91598 

400 15 

16 

17 

0.06413 

0.03959 

0.02339 

500 2 

3 

0.98170 

0.96853 

500 18 

19 

0.06132 

0.03908 
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4 0.94831 20 0.02398 

600 5 

6 

7 

0.96837 

0.94920 

0.92178 

600 21 

22 

23 

0.05795 

0.03783 

0.02389 

 

From the results of Table 7, at 400 patient-years, if 𝑛 ≤ 1, the trial is stopped, and valve 

is not marketed. On the other hand, if 𝑛 ≥ 16, the trial is stopped and the valve is marketed; 

however, if 2 ≤ 𝑛 ≤ 15 , the trial continues until 500 patient-years are accrued. At 500 patient-

years, if 𝑛 ≤ 3, the trial is stopped, and the heart valve is not marketed. Additionally, if 𝑛 ≥ 19, 

the trial is stopped and the valve is marketed; on the contrary, if 4 ≤ 𝑛 ≤ 18, the trial continues 

until 600 patient years are accrued. Lastly, at 600 patient-years, if 𝑛 ≤ 5, the trial ends and the 

valve is marketed; moreover, if 𝑛 ≥ 22, the trial concludes, and the valve fails to be marketed. 

Otherwise, if 6 ≤ 𝑛 ≤ 21, the trial continues until 800 patient-years, when it is eventually 

stopped and requires the maximum likelihood test to be carried out. 

Comparing the stopping rules of the conjugate vs. nonconjugate priors, we observe that it 

is harder to stop the trial for superiority as well as inferiority of the tested valve for the 

nonconjugate prior as fewer adverse events are required to market the value and more adverse 

events are required to stop the trial and not market the valve.  

4.4 Normal Inference 

4.4.1. Normal-Normal Example 

 We illustrate the application of a normal prior density when the data are normally 

distributed. Suppose a clinical trial is conducted to determine if a new drug was efficient in 

lowering blood pressure for patients suffering from hypertension. To do so, the researchers first 
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specify the endpoint of the trial as the percentage reduction in diastolic blood pressure. The new 

drug is given to the treatment group, while the control group receives a placebo.  The true mean 

percentage of the reduction in blood pressure is specified as 𝜇𝑡 and 𝜇𝑐, in the treatment and 

control groups, respectively. The researchers test  𝐻0: 𝜇𝑡 ≤ 𝜇𝑐 against 𝐻1: 𝜇𝑡 > 𝜇𝑐. If the 

alternative is accepted, it would indicate that the true mean percentage of the reduction in blood 

pressure is greater in the treatment group and thus the new drug is effective.  

Let 𝑋𝑡~𝑁(𝜇𝑡, 𝜎
2) and 𝑋𝑐~𝑁(𝜇𝑐, 𝜎

2) be the random variables representing respectively 

blood pressure reduction in the treatment and control group patients. The variance 𝜎2 is assumed 

known (from previous studies). Suppose there are 𝑛 patients in each group. The distribution of 

the difference in sample means is  �̅�𝑡 − �̅�𝑐~𝑁(𝜇𝑡 − 𝜇𝑐, 2𝜎
2/𝑛). Next, we specify a conjugate 

normal prior for the difference in means as 𝜇𝑡 − 𝜇𝑐~𝑁(𝛿0, 𝜎0
2) where the pdf is equal to 𝜋(𝛿) =

(2𝜋𝜎0
2)−1/2exp ( −

(𝛿−𝛿0)
2

2𝜎0
2 ) , −∞ <  𝛿 <  ∞. 

From this information, the posterior is derived as follows 

𝑓𝜇𝑡−𝜇𝑐(𝛿 | 𝑛, �̅�𝑡 , �̅�𝑐) ∝ 𝑓(𝑛, �̅�𝑡, �̅�𝑐 | 𝛿)𝜋(𝛿) 

= (2𝜋)−1/2(2𝜎2/𝑛)−1/2 exp {
−(�̅�𝑡 − �̅�𝑐 − 𝛿)

2

4𝜎2/𝑛
} ∙ (2𝜋𝜎0

2)−1/2 exp {
−(𝛿 − 𝛿0)

2

2𝜎0
2 } 

∝ exp {− 
𝑛𝛿2 − 2𝑛(�̅�𝑡 − �̅�𝑐)𝛿

4𝜎2
 −  
𝛿2 − 2𝛿0𝛿

2𝜎0
2 } 

= exp {−
1

2
 ∙
2𝜎2 + 𝑛𝜎0

2

2𝜎2𝜎0
2 ∙ (𝛿2 − 2 ∙

𝑛(�̅�𝑡 − �̅�𝑐)𝜎0
2 + 2𝛿0𝜎

2

2𝜎2 + 𝑛𝜎0
2 ∙ 𝛿)} 

which has the algebraic form of a normal distribution with mean 

𝑛(�̅�𝑡 − �̅�𝑐)𝜎0
2 + 2𝛿0𝜎

2

2𝜎2 + 𝑛𝜎0
2 = (𝛿0 ∙

1

𝜎0
2 + (�̅�𝑡 − �̅�𝑐) ∙

𝑛

2𝜎2
) / (

1

𝜎0
2 +

𝑛

2𝜎2
) 

and variance  
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(
2𝜎2 + 𝑛𝜎0

2

2𝜎2𝜎0
2 )

−1

= (
1

𝜎0
2 +

𝑛

2𝜎2
)

−1

. 

 It remains to determine reasonable values of 𝛿0 and  𝜎0
2, the parameters of the prior 

distribution. These can be elicited by asking investigators explicitly what they think the most 

likely value of 𝜇𝑡 − 𝜇𝑐 is.  The investigators should also specify 𝑃(𝐻1).  From here, 𝜎0 is derived 

as the solution of the equation 

𝑃(𝐻1) = 𝑃(𝜇𝑡 − 𝜇𝑐 > 0) = ∫ (2𝜋𝜎0
2)−1/2 exp {

−(𝑥 − 𝛿0)
2

2𝜎0
2 } 𝑑𝑥

∞

0

. 

Making the substitution 𝑧 = (𝑥 − 𝛿0)/𝜎0, we obtain 

𝑃(𝐻1) = ∫ (2𝜋)−1/2 exp(−
𝑧2

2
)𝑑𝑧 = 1 − Φ(−

𝛿0
𝜎0
) .

∞

−𝛿0/𝜎0

 

From here, 

𝜎0 =
−𝛿0

Φ−1(1 − 𝑃(𝐻1))
 . 

Once 𝜎, 𝑃(𝐻1), and 𝛿0 are elicited, we compute 𝜎0, and then fix group size 𝑛 and search 

for values of �̅�𝑡 − �̅�𝑐 that make the posterior probability of 𝐻1 either above 0.95 or below 0.05. 

The expression for the posterior probability is 

𝑃(𝐻1|𝑛, �̅�𝑡 − �̅�𝑐) = 𝑃(𝜇𝑡 − 𝜇𝑐 > 0 | 𝑛, �̅�𝑡 − �̅�𝑐) 

= 𝑃(𝑍 > −
𝑛(�̅�𝑡 − �̅�𝑐)𝜎0

2 + 2𝛿0𝜎
2

2𝜎2 + 𝑛𝜎0
2 /√(

1

𝜎0
2 +

𝑛

2𝜎2
)

−1

) 

= 1 − Φ

(

 
 
 −(

𝑛(�̅�𝑡 − �̅�𝑐)
2𝜎2

+
𝛿0
𝜎0
2)

√
1
𝜎0
2 +

𝑛
2𝜎2

)

 
 
 

. 
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 Next, we present a numeric example. Suppose from similar studies done in the past, the 

standard deviation is estimated as 𝜎 = 17.4. Suppose that researchers have confidence in the 

tested product and use an optimistic prior with 𝑃(𝐻1) = 0.8, and approximate the most likely 

value of 𝜇𝑡 − 𝜇𝑐  by 𝛿0 = 8.  Using this information, we calculate 

𝜎0 =
−8

Φ−1(1 − (0.8))
= 9.5. 

Suppose the researchers decided to conduct an interim Bayesian analysis when 𝑛 = 30 

patients per group are accrued. The trial is stopped if the posterior probability of  𝐻1 is either less 

than 0.05 or larger than 0.95. The stopping rules are summarized in Table 8 in Section 4.4.3. 

4.4.2. Normal-Cauchy Example 

For the same scenario, assume that the prior distribution does not follow a conjugate 

normal distribution but instead follows a nonconjugate Cauchy distribution. Thus we have that 

the distribution of the difference in sample means is  �̅�𝑡 − �̅�𝑐~𝑁(𝜇𝑡 − 𝜇𝑐, 2𝜎
2/𝑛) and assume 

that the prior distribution of 𝜇𝑡 − 𝜇𝑐  is 𝐶𝑎𝑢𝑐ℎ𝑦(𝛿0, 𝜎𝑜
2) with the probability density function  

 𝜋(𝛿) =
1

𝜋𝜎0[1+(
𝛿−𝛿0
𝜎0

)
2
]
  , −∞ < 𝛿 < ∞. The posterior density is proportional to 

𝑓𝜇𝑡−𝜇𝑐(𝛿 | 𝑛, �̅�𝑡 , �̅�𝑐) ∝ 𝑓(𝑛, �̅�𝑡, �̅�𝑐 | 𝛿)𝜋(𝛿) 

= (2𝜋)−1/2(2𝜎2/𝑛)−1/2 exp {
−(�̅�𝑡 − �̅�𝑐 − 𝛿)

2

4𝜎2/𝑛
} ∙

1

𝜋𝜎0 [1 + (
𝛿 − 𝛿0
𝜎0

)
2

]

 

∝

exp {
−(𝛿 − (�̅�𝑡 − �̅�𝑐))

2

4𝜎2

𝑛

}

1 + (
𝛿 − 𝛿0
𝜎0

)
2  . 
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The normalizing constant 

(

 
 
∫

exp{
−(𝛿−(�̅�𝑡− �̅�𝑐))

2

4𝜎2

𝑛

}

1+(
𝛿−𝛿0
𝜎0

)
2 𝑑𝛿

∞

−∞

)

 
 

−1

 has to be computed numerically. 

The parameter 𝛿0 is specified as an a priori most likely value of 𝜇𝑡 − 𝜇𝑐. In addition, the 

prior probability of accepting the alternative hypothesis 𝑃(𝐻1) can also be elicited. From here, 𝜎0 

is computed as the solution of the equation 

𝑃(𝐻1) = 𝑃(𝜇𝑡 − 𝜇𝑐 > 0) = ∫
1

𝜋𝜎0 [1 + (
𝛿 − 𝛿0
𝜎0

)
2

]

 𝑑𝛿 .
∞

0

 

Making the substitution 𝑧 =
𝛿−𝛿0

𝜎0
 , we obtain  

𝑃(𝐻1) = ∫
1

𝜋(1 + 𝑧2)
 𝑑𝑧 =

1

𝜋
arctan(𝑧) |

𝑧=− 
𝛿0
𝜎0

𝑧=∞ =
1

𝜋
(
𝜋

2
− arctan (− 

𝛿0
𝜎0
)) .

∞

− 
𝛿0
𝜎0

 

Hence, 

𝜎0 =
−𝛿0

tan (
𝜋
2 − 𝜋 ∙ 𝑃

(𝐻1))
 . 

The posterior probability of 𝐻1 can be found numerically according to the formula 

𝑃(𝐻1|𝑛, �̅�𝑡 − �̅�𝑐) = 𝑃(𝜇𝑡 − 𝜇𝑐 > 0 | 𝑛, �̅�𝑡 − �̅�𝑐) =

∫

exp {
−(𝛿 − (�̅�𝑡 − �̅�𝑐))

2

4𝜎2

𝑛

}

1 + (
𝛿 − 𝛿0
𝜎0

)
2  𝑑𝛿

∞

0

∫

exp{
−(𝛿 − (�̅�𝑡 − �̅�𝑐))

2

4𝜎2

𝑛

}

1 + (
𝛿 − 𝛿0
𝜎0

)
2  𝑑𝛿

∞

−∞

 .  

In our numerical example with  𝑃(𝐻1) = 0.8 and 𝛿0 = 8, we compute 
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𝜎0 =
−8

tan (
𝜋
2 − 𝜋 ∙ 0.8)

= 5.812. 

The trial is stopped if the posterior probability of  𝐻1 is either less than 0.05 or larger than 0.95. 

The stopping rules for 𝜎 = 17.4 and 𝑛 = 30 are summarized in Table 8 in Section 4.4.3. 

4.4.3. Normal Conjugate vs. Nonconjugate Stopping Results 

For the numerical example with the conjugate prior, the stopping rules are given in Table 8 

below. 

TABLE 8. Results of Bayesian Monitoring in Normal-Normal Example 

n �̅�𝑡 − �̅�𝑐 𝑃(𝐻1|𝑛, �̅�𝑡 − �̅�𝑐) n �̅�𝑡 − �̅�𝑐 𝑃(𝐻1|𝑛, �̅�𝑡 − �̅�𝑐) 

30 -10.0 

-9.9 

-9.8 

0.04918 

0.05127 

0.05342 

30 6.2 

6.3 

6.4 

0.94600 

0.94817 

0.95028 

 

The interpretation of the Bayesian monitoring procedure is as follows: when the sample 

size 𝑛 has reached 30 in each group, if  �̅�𝑡 − �̅�𝑐 ≤ −10, then the trial is stopped, and the drug is 

not marketed due to its inability to reduce blood pressure. On the other hand, if �̅�𝑡 − �̅�𝑐 ≥ 6.4, 

then the trial is stopped, and the drug is marketed. Otherwise, if −10 < �̅�𝑡 − �̅�𝑐 < 6.4, then the 

trial continues until the required sample size of 51 patients per group are accrued, at which point 

the trial is stopped and the standard 𝑧-test is carried out. The estimate of the required sample size 

of 51 patients per group for a non-Bayesian monitoring is computed via power analysis (see 

Section 4.1.3). The stopping rules for the Cauchy prior are given in Table 9. 
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TABLE 9. Results of Bayesian Monitoring in Normal-Cauchy Example 

n �̅�𝑡 − �̅�𝑐 𝑃(𝐻1|𝑛, �̅�𝑡 − �̅�𝑐) n �̅�𝑡 − �̅�𝑐 𝑃(𝐻1|𝑛, �̅�𝑡 − �̅�𝑐) 

30 -10.2 

-10.1 

-10.0 

0.04872 

0.05114 

0.05365 

30 5.0 

5.1 

5.2 

0.94974 

0.95169 

0.95357 

 

The interpretation of the Bayesian monitoring procedure is as follows: when the sample 

size 𝑛 has reached 30 in each group, if �̅�𝑡 − �̅�𝑐 ≤ −10.2, then the trial is stopped, and the drug 

is not marketed; however, if �̅�𝑡 − �̅�𝑐 ≥ 5.1, then the trial is stopped, and the drug is marketed. 

Otherwise, if −10.1 ≤ �̅�𝑡 − �̅�𝑐 ≤ 5.0, the continues until the required sample size of 51 patients 

per group are accrued, at which point the trial is stopped and the standard 𝑧 test is carried out. 

Comparing the results of the conjugate vs. nonconjugate priors, we conclude that it is 

harder to stop the trial earlier and not market the drug with nonconjugate prior (since the 

threshold is lower (-10.2 as opposed to -10.0 with the conjugate prior). However, it is easier to 

stop the trial and market the drug with nonconjugate prior since the acceptance value of 5.1 is 

lower than 6.4, which is required with the conjugate prior. 

4.5 Binomial Inference 

4.5.1 Binomial-Beta Example 

 A clinical trial is conducted in which 𝑁 patients with heart arrhythmia are implanted 

defibrillators. The researchers involved with this study are interested in testing whether the 

chance of false positive alarms by the defibrillators within the first year of use is low. To do so, 

we specify 𝑋~𝐵𝑖𝑛(𝑁, 𝑝) where 𝑋 is the number of false positives and 𝑝 is the probability of a 

false positive. The null and alternative hypotheses of interest are specified as 
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𝐻0: 𝑝 ≥ 𝑝0 vs. 𝐻1: 𝑝 < 𝑝0 . 

Since 𝑋 has a binomial distribution, we can specify a 𝐵𝑒𝑡𝑎(𝛼, 𝛽) prior on 𝑝, which is 

conjugate to the binomial distribution. The posterior distribution of 𝑝 after observing the number 

of false alarms 𝑋 = 𝑥 is derived as follows.  

𝑓𝑝(𝑝 | 𝑥) ∝ 𝑃𝑋(𝑥, 𝑝) ∙ 𝜋(𝑝) 

(
𝑁
𝑥
) 𝑝𝑥(1 − 𝑝)𝑁−𝑥 ∙

𝑝𝛼−1 (1 − 𝑝)𝛽−1

𝐵(𝛼, 𝛽)
∝   𝑝𝑥+𝛼−1 (1 − 𝑝)𝑁−𝑥+𝛽−1. 

Thus, the posterior distribution is 𝐵𝑒𝑡𝑎(𝑥 + 𝛼,𝑁 − 𝑥 + 𝛽).  

 The values of 𝛼 and 𝛽 may be determined from two equations, for the prior probability of 

𝐻1, and the most likely value of 𝑝 (i.e., the mode of the prior distribution). The equations are:  

𝑃(𝐻1) = 𝑃(𝑝 < 𝑝0) = ∫  
𝑝𝛼−1 (1 − 𝑝)𝛽−1

𝐵(𝛼, 𝛽)

𝑝0

0

𝑑𝑝, 

and 

𝑀𝑜𝑑𝑒 =
𝛼 − 1

𝛼 + 𝛽 − 2
  

where 𝑀𝑜𝑑𝑒 < 𝑝0, to ensure a unique solution for the estimates of 𝛼 and 𝛽. 

To present a numeric example, suppose there are 𝑁 = 110 patients and the probability of 

a false alarm 𝐻1: 𝑝 < 0.25 is being tested. Suppose the researchers use a skeptical prior with the 

probability of the true alternative equal to 𝑃(𝐻1) = 0.40, and the elicited value of the mode is 

0.23. Solving numerically the two equations above, we get that the estimated values for 𝛼 and 𝛽 

are 1.96 and 4.22, respectively. The posterior probability of the alternative is 

𝑃(𝐻1|𝑥) = 𝑃(𝑝 < 𝑝0|𝑥) = ∫  
𝑝𝑥+𝛼(1 − 𝑝)𝑁−𝑥+𝛽−1

𝐵(𝑥 + 𝛼,𝑁 − 𝑥 + 𝛽)

𝑝0

0

𝑑𝑝. 
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 The trial is stopped if this probability is less than 0.05 or in excess of 0.95. The stopping 

rules are shown in Table 10 Section 4.5.3. 

4.5.2 Binomial-Truncated Normal 

 Using the same information from the previous example, suppose the researchers choose 

to specify a nonconjugate truncated normal prior on 𝑝 with the probability density function 

𝜋(𝑝) =
(2𝜋𝜎2)−1/2exp ( −

(𝑝 − 𝜇)2

2𝜎2
)

∫ (2𝜋𝜎2)−1/2exp ( −
(𝑝 − 𝜇)2

2𝜎2
)  𝑑𝑝

1

0

, 0 ≤ 𝑝 ≤ 1.  

The posterior distribution of 𝑝 after observing the number of false alarms 𝑥 is  

𝑓𝑝(𝑝 | 𝑥) =
𝑝𝑥(1 − 𝑝)𝑁−𝑥 ∙ exp ( −

(𝑝 − 𝜇)2

2𝜎2
)

∫ 𝑝𝑥(1 − 𝑝)𝑁−𝑥 ∙ exp ( −
(𝑝 − 𝜇)2

2𝜎2
)𝑑𝑝 

1

0

  

where the mean 𝜇 and standard deviation 𝜎 can be arbitrarily chosen.  

The posterior probability of the alternative has the expression 

𝑃(𝐻1|𝑥) = 𝑃(𝑝 < 𝑝0 |𝑥) =
∫ 𝑝𝑥(1 − 𝑝)𝑁−𝑥 ∙ exp ( −

(𝑝 − 𝜇)2

2𝜎2
)  𝑑𝑝

𝑝0
0

∫ 𝑝𝑥(1 − 𝑝)𝑁−𝑥 ∙ exp ( −
(𝑝 − 𝜇)2

2𝜎2
)𝑑𝑝 

1

0

 . 

The trial is stopped if this probability is smaller than 0.05 or larger than 0.95. The stopping rules 

are shown in the next section in Table 11. 

4.5.3. Binomial Conjugate vs. Nonconjugate Stopping Results 

In the numerical example with the beta conjugate prior, the stopping rules are as given in Table 

10 below.  
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TABLE 10. Results of Bayesian Monitoring in Binomial-Beta Example 

x 𝑃(𝐻1|𝑥) x 𝑃(𝐻1|𝑥) 

19 

20 

0.967199 

0.946275 

35 

36 

0.052273 

0.038359 

 

If 𝑥 ≤ 19, the trial is stopped, indicating that the number of false positives is low, and 

thus the defibrillators can be sold to the public. On the contrary, if 𝑥 ≥ 35, the trial is stopped 

due to a high number of false positives, and thus the defibrillators are not marketed. Otherwise, if 

20 ≤ 𝑥 ≤ 35, the trial continues.  

For the nonconjugate truncated normal prior, the stopping rule is summarized in Table 11 that 

follows. 

TABLE 11. Results of Bayesian Monitoring in Binomial-Truncated Normal Example 

x 𝑃(𝐻1|𝑥) x 𝑃(𝐻1|𝑥) 

19 

20 

0.953627 

0.92602 

34 

35 

0.054265 

0.035085 

 

Remark: The calculations in table assumes the researchers arbitrary specify 𝜇 =
1

2
 and 

𝜎 =
1

4
 for the posterior distribution 

We then give our interpretation of the results shown in Table 6. If 𝑥 ≤ 19, the trial is 

stopped, indicating that the number of false positives is low, and thus the defibrillators can be 

sold to the public. On the contrary, if 𝑥 ≥ 35, the trial is stopped due to a high number of false 
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positives, and thus the defibrillators are not marketed. Likewise, if 20 ≤ 𝑥 ≤ 34, the trial 

continues.  

Comparing the results of the conjugate to that of the nonconjugate model, we observe 

equal lower bound of 19 false positives to stop the trial and market defibrillators. However, use 

of nonconjugate prior allows stopping the trial earlier and not marketing defibrillators if 35 false 

positive incidences are observed as opposed to 36 with conjugate prior, making it easier to stop 

the trial with nonconjugate prior. A possible explanation for this phenomenon is observe that 

with the posterior of the nonconjugate model, because we restricted the parameter 𝑝 to the 

interval [0,1] where 𝜇 and 𝜎 are arbitrary constants, the nonconjugate model yielded a posterior 

that behaved somewhat like a beta distribution. This is the case with the Binomial-Beta example 

shown above, as this example resulted in a beta posterior distribution. Therefore, we can 

conclude that both models performed almost equally well, but the null 𝐻0 was easier to accept 

for the nonconjugate model.   
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CHAPTER 5 

CONCLUSION 

 This thesis provided a broad overview of statistical techniques applicable to medical data, 

in survival analysis, longitudinal regression data analysis, and Bayesian monitoring of clinical 

trials.  In Chapter 2, we modeled survival data using a variety of techniques (such as Kaplan- 

Meier survival curve, Cox proportional hazards model, Weibull regression, etc.).  

 In Chapter 3, we modeled longitudinal data using random slope and intercept models for 

longitudinal responses with normal, gamma, binary, and Poisson distributions on simulated 

datasets. Next, to test how well each model fits the data, we employed a goodness-of-fit deviance 

test and found out that all of our fitted models were definitely suitable for our data. We used the 

fitted models for interpretation of estimated significant regression coefficients and for prediction 

of response for a fixed values of predictor variables. From there, we alternatively fitted 

generalized estimating equations (GEE) models for each of our datasets, choosing the optimal 

one according to the QIC criterion. We also interpreted the estimated significant regression 

coefficients and used the fitted GEE models for prediction.   

 The focus in Chapter 4 was on providing an overview of interim data monitoring in 

clinical trials using the classical sequential testing approach and the Bayesian sequential 

procedure. The Bayesian procedure was illustrated with three clinical trial settings involving 

end-point variables with Poisson, normal, and binomial distributions. Conjugate as well as 

nonconjugate prior distributions of the parameters were analyzed and results compared. We saw 

through the numerical examples, that the use of conjugate priors achieves computationally easier 

and faster results, and moreover, the stopping rules are less strenuous than when nonconjugate 

priors are utilized. 
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 Further work can be done on the examples mentioned throughout the thesis. Most notably 

in survival analysis, we can use the accelerated failure time model (AFT model) to serve as an 

alternative to the commonly used proportional hazards model, competing risk models, and 

general frailty models. We can possibly explore the use of some machine learning methods on 

survival data, such as decision trees, random forests, and so on.  
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APPENDICES 
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APPENDIX A 

 

R CODE FOR SURVIVAL OUTPUT
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#Survival analysis finalized codes 

#primary_biliary_cirrhosis 

#dataset source: 

#https://www.kaggle.com/jixing475/mayo-clinic-primary-biliary-cirrhosis-

data?select=pbc.csv 

library(survival) 

library(readxl) 

library(dplyr) 

library(msm)#this package is used to fit a weibull/expontential survival fxn 

library(flexsurv) 

library(mice) 

library(survMisc) 

library(KMsurv) 

library(SurvRegCensCov) 

library(ggplot2) 

library(pammtools) 

library(survminer) 

 

#first, "Status=2" refers to those who are dead, therefore we  should censor 

the column 

#It appears that row 313 and above are all empty, therefore we will delete 

them 

pbc <- read_excel("C:/Schoolwork_files/my excel 

files/primary_biliary_cirrhosis.xlsx") 

pbc<-pbc[!(pbc$trt=="NA"),] 

pbc<-pbc[1:312,] 

pbc$status[pbc$status==1]<-0 

pbc$status[pbc$status==2]<-1 

 

 

#We are looking at the time between registration(age) until event occurs 

#**Using a Kaplan Meier Curve 

event<-survfit(Surv(age,status)~1, conf.type="none", data=pbc) 

summary(event) 

surv_object<-Surv(time=pbc$age,event=pbc$status)  

general_kaplan_meier <- survfit(surv_object ~ 1, data = pbc) 

 

#GGPLOT of a general KM curve 

ggsurvplot(general_kaplan_meier, data = pbc, xlab="Age", ylab="Survival 

probability", legend.labs=c("Censoring"),palette=c("blue"), censor.size=5) 

#Summary Stats for general KM 

summary(general_kaplan_meier) 

 

#K-M gender survival rate  

gendervector<-table(pbc$sex) 

gendervector[names(gendervector)=="m"] #36 

gendervector[names(gendervector)=="f"]#276 

gender.surv<-survfit(surv_object~sex,data=pbc) 

summary(gender.surv) 

ggsurvplot(gender.surv,legend.labs=c("Female(censored)","Male(censored)"), 

xlab="Age", title="Kaplan Meier Survival Curve") 
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#K-M Drug survival curve 

drug.surv<-survfit(surv_object~trt,data=pbc) 

summary(drug.surv) 

ggsurvplot(drug.surv,legend.labs=c("D-Penicillamine","Placebo"),xlab="Age", 

palette=c("purple","orange"),title="Kaplan Meier Survival Curve") 

 

#Running LR test to verify significance differences 

survdiff(Surv(age,status)~sex,data=pbc) #not significant 

survdiff(Surv(age,status)~trt,data=pbc) #Drug is somewhat significant 

 

#General Nelson aalen 

n.a<-survfit(coxph(Surv(age,status)~1, data=pbc), type="aalen") 

summary(n.a) #Summary statistics for NA estimator 

 

#Plotting a general NA estimator 

ggsurvplot(n.a, data = pbc,xlab="Age", ylab="Survival 

Probability",palette=c("black"),title="Nelson-Aalen Estimator", 

legend.labs="Censored", censor.size=4) 

 

#Nelson aalen comparing males vs females 

data_genderM<-pbc[pbc$sex=="m",] 

data_genderF<-pbc[pbc$sex=="f",] 

 

#Summary statistics for NA stratified by male and female 

n.a.m<-survfit(coxph(Surv(age,status)~1, data=data_genderM), type="aalen") 

summary(n.a.m) 

 

n.a.f<-survfit(coxph(Surv(age,status)~1, data=data_genderF), type="aalen") 

summary(n.a.f) 

 

#Plotting NA estimator for males/females  

plot(n.a.m,col=c("blue"), xlab="Age", ylab="Survival Probability", 

main="Nelson Aalen Survival Curves", conf.int=FALSE) 

legend("bottomleft", c("M","F"), lty=1, col=c("blue","red")) 

lines(n.a.f, col="red", conf.int=FALSE) 

 

#Nelson aalen summary statistics comparing Placebo vs D-Penicillamine 

data_controldrug<-pbc[pbc$trt==2,] #2 is placebo 

data_treatmentdrug<-pbc[pbc$trt==1,] #1 is trt 

 

n.a.control<-survfit(coxph(Surv(age,status)~1, data=data_controldrug), 

type="aalen") 

summary(n.a.control) 

 

n.a.trt<-survfit(coxph(Surv(age,status)~1,data=data_treatmentdrug), 

type="aalen") 

summary(n.a.trt) 

 

#Plotting NA estimator for Treatment vs control drug 
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plot(n.a.control,col=c("purple"), xlab="Age", ylab="Survival 

Probability",main="Nelson Aalen Survival Curves",conf.int=FALSE) 

legend("bottomleft", c("Placebo","D-Penicillamine"), lty=1, 

col=c("purple","green")) 

lines(n.a.trt,col="green", conf.int=FALSE) 

 

 

#Fitting a parametric survival model for weibull & exp dist 

wei_surv <- flexsurvreg(Surv(age, status)~1, data=pbc, dist="weibull") 

plot(wei_surv, ci=FALSE, conf.int=FALSE, ylab="Survival Probability", 

xlab="Age", main="Weibull estimator of the survival distribution") 

 

#Try fitting a weibull regression model on  all variables 

weibull_full_model<- survreg(Surv(time,status)~trt+ascites+hepato 

+spiders+edema+age+sex+bili+chol+albumin+copper+alk.phos+ast+trig+platelet+pr

otime+stage, data=pbc,dist="weibull") 

summary(weibull_full_model) 

 

#checking model fit 

weibull_intercept_model<-flexsurvreg(Surv(time, status)~1, data=pbc, 

dist="weibull") 

print(deviance<- -2*(logLik(weibull_intercept_model)-

logLik(weibull_full_model)))  

print(p.value<- pchisq(deviance, df=8, lower.tail=FALSE)) # Significantly 

less than 0.05 

 

#reducing the model to those with P-values less than 5% 

weibull_reduced<-survreg(Surv(time,status)~edema+age+bili+albumin+copper+ 

ast+protime+stage, data=pbc,dist="weibull") 

summary(weibull_reduced) 

 

 

#Cox Proportional hazard model on all variables; 

cox=coxph(Surv(time,status)~trt+ascites+hepato+spiders+edema+age+sex 

+bili+chol+albumin+copper+alk.phos+ast+trig+platelet+protime+stage,data=pbc) 

summary(cox)  

basehaz(cox, centered=TRUE) 

 

#reducing the model to those with P-values less than 10% 

library(rgl) 

library(fields) 

cox_reduced<-

coxph(Surv(time,status)~edema+age+bili+albumin+copper+ast+protime 

+stage, data=pbc) 

summary(cox_reduced) 

 

#The basehaz code estimates the baseline hazard for various times for this 

#reduced model  

basehaz(cox_reduced, centered = TRUE) 
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#estimates the baseline survival function computed at the mean values of 

#predictors  

base.surv<-survfit(cox_reduced) 

summary(base.surv) 

#Estimating the sample means of reduced model significant predictors 

#NOTE: there is a missing value in the copper column so that value is omitted 

from calculations 

summarise(pbc, edema = mean(edema), 

          age = mean(age), 

          bili = mean(bili), 

          albumin = mean(albumin), 

          copper = mean(copper,na.rm=TRUE), 

          ast = mean(ast), 

          protime=mean(protime), 

          stage=mean(stage)) 
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APPENDIX B 

SURVIVAL OUTPUT FROM R
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Table 1A. Log rank test results on gender survival 

 

 

Table 1B. Log rank test results on effectiveness of drugs 
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Table 2. Weibull output on all predictors 
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Table 3. Reduced Weibull model on significant predictors 
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Table 4. Cox Proportional hazard model output 
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Table 5. Reduced Cox Proportional hazards model by 5% significance  
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Table 6. Estimates of sample means for significant Cox Predictors under the reduced model 
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Table 7. Baseline Cox Survival Approximation at about t=1925 
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APPENDIX C 

 

LONGITUDINAL ANALYSIS R CODES 
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#Longitudial code for Normal,Gamma,Binary, & Poisson 

 

library(readxl) 

library(nlme) 

library(MuMIn) 

library(lme4) 

library(dplyr) 

library(geepack) 

library(reshape2) 

library(rcompanion) 

######################## NORMAL RESPONSE ################ 

########################################################### 

#Blood pressure longitudinal study on simulated data 

 

bp <- read_excel("C:/Schoolwork_files/my excel files/bp.xlsx") 

 

#creating long-form data set 

longform.data.bp<- melt(bp, id.vars=c("ID", "GENDER", 

"ACTIVITY","SODIUM","HISTORY","CATEGORY"), variable.name="TIME", 

value.name="Blood_Pressure") 

 

#sorting long-form data set by id 

longform.data.bp<- longform.data.bp[order(longform.data.bp$ID),] 

 

#creating numeric variable for time 

time.factor<- ifelse(longform.data.bp$TIME=="WEEK1",1, 

                     ifelse(longform.data.bp$TIME=="WEEK2",2,  

                            ifelse(longform.data.bp$TIME=="WEEK3",3, 

                                   ifelse(longform.data.bp$TIME=="WEEK4",4,5 

                                   )))) 

#specifying reference categories 

longform.data.bp$Blood_Pressure<-as.numeric(longform.data.bp$Blood_Pressure) 

longform.data.bp$GENDER<-as.factor(longform.data.bp$GENDER) 

 

#Converting to Factor 

longform.data.bp$SODIUM<-as.factor(longform.data.bp$SODIUM) 

longform.data.bp$HISTORY<-as.factor(longform.data.bp$HISTORY) 

str(longform.data.bp) 

history_factor<-relevel(longform.data.bp$HISTORY,ref="Y") 

sex_factor<-relevel(longform.data.bp$GENDER,ref="F") 

sodium_factor<-relevel(longform.data.bp$SODIUM,ref=3) 

 

 

#plotting histogram with fitted normal density 

hist(longform.data.bp$Blood_Pressure,main = "Histogram of Normal Response", 

xlab="Syatolic Blood Pressure in mm/Hg") 

 

#testing for normality of distribution 

shapiro.test(longform.data.bp$Blood_Pressure) 
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#Fitting random s/i model 

summary(fitted.model<- lme(Blood_Pressure ~ sex_factor+ACTIVITY+sodium_factor 

+HISTORY+CATEGORY+time.factor, random=~ 1 +time.factor|ID,                        

control=list(opt="optim"),data=longform.data.bp)) 

 

intervals(fitted.model) 

 

#checking model fit 

null.model<- glm(Blood_Pressure ~ .,data=longform.data.bp) 

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))  

 

print(p.value<- pchisq(deviance, df=3, lower.tail=FALSE))  

 

 

#*****Fitting NORMAL GEE models 

#fitting GEE model with autoregressive working correlation matrix 

summary(ar1.fitted.model.normal<- geeglm(Blood_Pressure ~ sex_factor 

+ACTIVITY+sodium_factor+HISTORY+CATEGORY+time.factor, data=longform.data.bp, 

id=ID, family=gaussian(link="identity"), corstr="ar1")) 

QIC(ar1.fitted.model.normal) #93101.69 

 

# #fitting GEE model with unstructured working correlation matrix 

summary(uns.fitted.model.normal<- geeglm(Blood_Pressure ~ sex_factor 

+ACTIVITY+sodium_factor+HISTORY+CATEGORY+time.factor, data=longform.data.bp, 

id=ID, family=gaussian(link="identity"), corstr="unstructured")) 

QIC(uns.fitted.model.normal) #96540.92   

 

 

#fitting GEE model with exchangeable working correlation matrix 

summary(exch.fitted.model.normal<- geeglm(Blood_Pressure ~ sex_factor 

+ACTIVITY+sodium_factor+HISTORY+CATEGORY+time.factor, data=longform.data.bp, 

id=ID, family=gaussian(link="identity"), corstr="exchangeable")) 

QIC(exch.fitted.model.normal) #92964.38  ******Good fit**** 

 

 

#fitting GEE model with independent working correlation matrix 

summary(ind.fitted.model.normal<- geeglm(Blood_Pressure ~ sex_factor 

+ACTIVITY+sodium_factor+HISTORY+CATEGORY+time.factor, data=longform.data.bp, 

id=ID, family=gaussian(link="identity"), corstr="independence")) 

QIC(ind.fitted.model.normal)#92981      

 

 

######################################################################### 

 

######################## GAMMA RESPONSE ################ 

 

#Cancer Longitudinal analysis 

cancer <- read_excel("C:/Schoolwork_files/my excel files/cancer.xlsx") 
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###THE MISSING VALUES(DOTS) ARE CONVERTED TO NA*** 

cancer$WEEK6[cancer$WEEK6 == "."] <- NA 

cancer<-na.omit(cancer) 

str(cancer) 

cancer$WEEK6<-as.numeric(cancer$WEEK6) 

 

#creating long-form data set 

longform.data.cancer<- melt(cancer, id.vars=c("ID", "TRT", "AGE","WEIGHT", 

"STAGE","SEX"), variable.name="TIME", value.name="oral_cond") 

 

#sorting long-form data set by id 

longform.data.cancer<- longform.data.cancer[order(longform.data.cancer$ID),] 

 

#creating numeric variable for time 

time.factor<- ifelse(longform.data.cancer$TIME=="WEEK0", 0, 

                     ifelse(longform.data.cancer$TIME=="WEEK2",  

                            

2,ifelse(longform.data.cancer$TIME=="WEEK4",4,6))) 

#specifying reference categories 

longform.data.cancer$TRT<-as.factor(longform.data.cancer$TRT) 

longform.data.cancer$SEX<-as.factor(longform.data.cancer$SEX) 

treatment_factor<- relevel(longform.data.cancer$TRT, ref="Cx") 

sex_factor<-relevel(longform.data.cancer$SEX,ref="F") 

str(longform.data.cancer) 

 

#plotting histogram with fitted normal density 

longform.data.cancer$oral_cond<-as.numeric(longform.data.cancer$oral_cond) 

plotNormalHistogram(longform.data.cancer$oral_cond,xlab="Response",main="Gamm

a Response Distribution")   

 

#testing for normality of distribution 

shapiro.test(longform.data.cancer$oral_cond) #Significantly less than 0.005 

 

 

 

#fitting gamma regression model with random slope and intercept 

summary(gamma.fitted.model<- glmer(oral_cond ~ sex_factor+treatment_factor + 

AGE+WEIGHT+STAGE+time.factor+(1 + time.factor| ID), 

data=longform.data.cancer, family=Gamma(link='log'))) 

 

#checking model fit 

null.model<- glm(oral_cond ~1,data=longform.data.cancer, 

amily=Gamma(link='log')) 

gamma.fitted.model.deviance.testing<-glm(oral_cond ~ sex_factor 

+treatment_factor+AGE+ WEIGHT+STAGE+time.factor, data=longform.data.cancer, 

family=Gamma(link='log')) 
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print(deviance<- -2*(logLik(null.model)-

logLik(gamma.fitted.model.deviance.testing))) 

print(pvalue<- pchisq(deviance, df=7, lower.tail = FALSE)) #Fitted model 

better 

 

 

#fitting GEE model with autoregressive working correlation matrix 

summary(ar1.fitted.model.gamma<- geeglm(oral_cond ~ sex_factor 

+treatment_factor+AGE+WEIGHT+STAGE+time.factor, data=longform.data.cancer, 

id=ID, family=Gamma(link="log"), corstr="ar1")) 

QIC(ar1.fitted.model.gamma) #1102.12 

 

# #fitting GEE model with unstructured working correlation matrix 

summary(uns.fitted.model.gamma<- geeglm(oral_cond ~ sex_factor 

+treatment_factor+AGE+WEIGHT+STAGE+time.factor, data=longform.data.cancer, 

id=ID, family=Gamma(link="log"), corstr="unstructured")) 

QIC(uns.fitted.model.gamma) #1097.33 ***BEST FIT*** 

 

 

#fitting GEE model with exchangeable working correlation matrix 

summary(exch.fitted.model.gamma<- geeglm(oral_cond ~ sex_factor 

+treatment_factor+AGE+WEIGHT+STAGE+time.factor, data=longform.data.cancer, 

id=ID, family=Gamma(link="log"), corstr="exchangeable")) 

QIC(exch.fitted.model.gamma) #1101.11 

 

 

#fitting GEE model with independent working correlation matrix 

summary(ind.fitted.model.gamma<- geeglm(oral_cond ~ sex_factor 

+treatment_factor+AGE+WEIGHT+STAGE+time.factor, data=longform.data.cancer, 

id=ID, family=Gamma(link="log"), corstr="independence")) 

QIC(ind.fitted.model.gamma)#1111.5 

 

 

######################################################################### 

 

######################## BINARY RESPONSE ################ 

#Binary logistic longitidunal on anthrax *Fake(made up)* data 

anthrax <- read_excel("C:/Schoolwork_files/my excel 

files/anthrax.fake.data.xlsx") 

 

#creating longform dataset 

longform.datax<- melt(anthrax, id.vars=c("ID", "age","medicine","gender", 

"risk","contacted"), variable.name="monthn", 

value.name="remission_from_anthrax") 

month<- ifelse(longform.datax$monthn=='month1',1, 

               ifelse(longform.datax$monthn=='month2',2, 

                      ifelse(longform.datax$monthn=='month3',3, 

                             ifelse(longform.datax$monthn=='month4',4, 

                                    ifelse(longform.datax$monthn=='month5',5, 



 

124 
 

                                           

ifelse(longform.datax$monthn=='month6',6, 

                                                  

ifelse(longform.datax$monthn=='month7',7, 

                                                         

ifelse(longform.datax$monthn=='month8',8, 

                                                                

ifelse(longform.datax$monthn=='month9',9, 

                                                                       

ifelse(longform.datax$monthn=='month10',10, 

                                                                              

ifelse(longform.datax$monthn=='month11',11,12))))))))))) 

#Specifying factors 

longform.datax$contacted<-as.factor(longform.datax$contacted) 

contact_factor<- relevel(longform.datax$contacted, ref="Y") 

longform.datax$medicine<-as.factor(longform.datax$medicine) 

longform.datax$gender<-as.factor(longform.datax$gender) 

 

#fitting generalized random slope and intercept model, binary logistic 

summary(fitted.model<- glmer(remission_from_anthrax ~ age+medicine+gender 

+risk+contact_factor+month+(1+month|ID), data=longform.datax, 

family=binomial(link='logit')))# 

hist(longform.datax$remission_from_anthrax,main="Histogram of binary 

response",xlab="Response") 

 

#checking model fit by deviance test 

fitted.model.deviance.testing<-glm(remission_from_anthrax ~ age+medicine+ 

gender+risk+contact_factor+ month, data=longform.datax, 

family=binomial(link='logit')) 

 

null.model<- glm(remission_from_anthrax ~ 1, data=longform.datax,  

family=binomial(link='logit')) 

 

print(deviance<- -2*(logLik(null.model)-

logLik(fitted.model.deviance.testing))) 

print(p.value<- pchisq(deviance, df=7, lower.tail = FALSE)) 

 

##################################GEE##################### 

#fitting GEE model with autoregressive working correlation matrix 

summary(ar1.fitted.log.model<- geeglm(remission_from_anthrax ~ age+medicine 

+gender+risk+contact_factor+month, data=longform.datax, id=ID,  

family=binomial(link="logit"), corstr="ar1")) 

QIC(ar1.fitted.log.model) #1441 

 

 

#fitting GEE model with exchangeable working correlation matrix 

summary(exch.fitted.log.model<- geeglm(remission_from_anthrax ~ age+medicine 

+gender+risk+contact_factor+month, data=longform.datax, id=ID,  

family=binomial(link="logit"), corstr="exchangeable")) 
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QIC(exch.fitted.log.model) #1441 

 

#fitting GEE model with independent working correlation matrix 

summary(ind.fitted.log.model<- geeglm(remission_from_anthrax ~ age+medicine + 

gender+risk+contact_factor+month, data=longform.datax, id=ID,  

family=binomial(link="logit"), corstr="independence")) 

QIC(ind.fitted.log.model) #1441 

 

 

# all 3 had the same QIC so it's up to the person to choose which one they 

want 

 

######################################################################### 

 

######################## POISSON RESPONSE ################ 

 

#Cigerette medicine effectiveness  Longitudinal study *Fake* data 

cig <- read_excel("C:/Schoolwork_files/my excel 

files/cigarette.longitudinal.xlsx") 

 

#creating long-form data set 

longform.data.cig<- melt(cig, id.vars=c("ID", "SEX", "TRT","AGE","WEIGHIN", 

"Intention","Addiction.Status"), variable.name="TIME", 

value.name="N_CIGARETTES") 

 

#sorting long-form data set by id 

longform.data.cig<- longform.data.cig[order(longform.data.cig$ID),] 

 

#specifying reference categories 

longform.data.cig$TRT<-as.factor(longform.data.cig$TRT) 

longform.data.cig$SEX<-as.factor(longform.data.cig$SEX) 

treatment_factor<- relevel(longform.data.cig$TRT, ref="Cx") 

sex_factor<-relevel(longform.data.cig$SEX,ref="F") 

 

#creating numeric variable for time 

time.factor<- ifelse(longform.data.cig$TIME=="Mo1",1, 

                     ifelse(longform.data.cig$TIME=="Mo2",2,  

                            ifelse(longform.data.cig$TIME=="Mo3",3, 

                                   ifelse(longform.data.cig$TIME=="Mo4",4, 

                                          

ifelse(longform.data.cig$TIME=="Mo5",5,6 

                                          ))))) 

#plotting histogram with fitted poisson response density 

hist(longform.data.cig$N_CIGARETTES,main ="Histogram of Poisson Response", 

xlab="Total cigarettes smoked") 

 

#testing for normality of distribution 

shapiro.test(longform.data.cig$N_CIGARETTES) 
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#Fitted  Poisson model 

summary(fitted.model<- glm(N_CIGARETTES ~ treatment_factor+AGE 

+WEIGHIN+Intention+Addiction.Status+time.factor+sex_factor, 

family=poisson(link="log"), data=longform.data.cig)) 

 

 

#checking model fit 

null.model<- glm(N_CIGARETTES ~ 1, data=longform.data.cig, family = 

poisson(link = "log")) 

print(deviance<- -2*(logLik(null.model)-logLik(fitted.model)))  

 

print(p.value<- pchisq(deviance, df=7, lower.tail=FALSE))  

 

#fitting random slope and intercept Poisson model 

summary(fit.pois<-glmer(N_CIGARETTES ~ sex_factor+treatment_factor+AGE 

+WEIGHIN+Intention+Addiction.Status+time.factor+ (1+time.factor|ID),  

data=longform.data.cig, family=poisson(link="log"))) 

 

 

################################GEE############################ 

#fitting GEE model with autoregressive working correlation matrix 

 

summary(ar1.fitted.pois.model<- geeglm(N_CIGARETTES ~ sex_factor 

+treatment_factor+AGE+WEIGHIN+Intention+Addiction.Status+time.factor,                                        

data=longform.data.cig, id=ID, family=poisson(link="log"), corstr="ar1")) 

QIC(ar1.fitted.pois.model) #-25573.84 *** BEST FIT *** 

 

 

#fitting GEE model with exchangeable working correlation matrix 

summary(exch.fitted.pois.model<- geeglm(N_CIGARETTES ~ sex_factor 

+treatment_factor+AGE+WEIGHIN+Intention+Addiction.Status+time.factor, 

data=longform.data.cig, id=ID, family=poisson(link="log"), 

corstr="exchangeable")) 

QIC(exch.fitted.pois.model) #-25437.9 

 

#fitting GEE model with independent working correlation matrix 

summary(ind.fitted.pois.model<- geeglm(N_CIGARETTES ~ sex_factor 

+treatment_factor+AGE+WEIGHIN+Intention+Addiction.Status+time.factor, 

data=longform.data.cig, id=ID, family=poisson(link="log"), 

corstr="independence")) 

QIC(ind.fitted.pois.model) #-25552.6  

 

#fitting GEE model with unstructured working correlation matrix 

summary(uns.fitted.pois.model<- geeglm(N_CIGARETTES ~ sex_factor 

+treatment_factor+AGE+WEIGHIN+Intention+Addiction.Status+time.factor, 

data=longform.data.cig, id=ID, family=poisson(link="log"), 

corstr="unstructured")) 

QIC(uns.fitted.pois.model) #-25552.26 

################################# 
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APPENDIX D 

 

LONGITUDINAL OUTPUT AND DATASET SAMPLES 
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Table 1A. Shapiro Wilk normality test results  

 

 

Table 1B. Deviance testing results 
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Table 2A. Normal Response random slope and intercept output 
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Table 2B. Normal response GEE model with AR1 correlation matrix 
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Table 2C. Normal response GEE model with unstructured working correlation matrix 
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Table 2D. Normal response GEE model with exchangeable working correlation matrix 
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Table 2E. Normal response GEE model with independent working correlation matrix 
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Table 3A. Normality test for gamma response 

 

 

Table 3B. Deviance testing results for gamma response 
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Table 4A. Random Slope and intercept Gamma output 
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Table 4B. Gamma GEE model unstructured working correlation matrix 
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Table 4C. Gamma GEE model with exchangeable working correlation matrix 

. 
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Table 4D. Gamma GEE model with independent working correlation matrix 
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Table 4E. Gamma GEE model with Autoregressive working correlation matrix 
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Table 5. Deviance test results for Binary response 
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Table 6A. Binary random slope and intercept output 
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Table 6B. Binary GEE model with AR1 correlation matrix 
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Table 6C. Binary GEE model with exchangeable working correlation matrix 
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Table 6D. Binary GEE model with independent working correlation matrix 
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Table 7. Deviance testing for Poisson response 

 

 

Table 8A. Random slope and intercept Poisson output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

146 
 

Table 8B. Poisson GEE model with AR1 
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Table 8C. Poisson GEE model with exchangeable working correlation matrix 
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Table 8D. Poisson GEE model with independent working correlation matrix 
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Table 8D. Poisson GEE model with unstructured working correlation matrix 
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R CODES FOR BAYESIAN ANALYSIS 

 

 

 

 

 

 

 



 

151 
 

#Interim Data Monitoring Clean Code 

library(pracma) 

library(extraDistr) 

 

########################################################################### 

############################### POISSON INFERENCE ######################### 

 

######################### *Poisson-Gamma example*##################### 

#Root find the parameters alpha, beta to use for the posterior model 

p.prior<- 0.3 

R0<- 0.024 

beta<- function(alpha){R0/(alpha-1)} 

eq<- function(alpha) {p.prior-pgamma(R0,alpha, 1/beta(alpha))} 

alpha.sol<- uniroot(eq, c(2,10))$root 

beta.sol<- beta(alpha.sol) 

print(alpha.sol) 

print(beta.sol) 

 

####################################### 

#Model for t1=400 

t1=400 

prob_poigam1<- function(r,n) { 

  prob_poigam1<- r^(n+a-1)*exp(-r*(t1+1/b)) 

  return(unionvector=c(prob_poigam1)) 

} 

area1<- function(n) integrate(prob_poigam1, lower=0, upper=Inf, n=n, abs.tol 

= 0L )$value 

normalizing.const.poigam<- Vectorize(area1) 

n =c(seq(1,22,by=1)) 

normalizing.const.poigam(n) 

 

prob_poigam2<- function(r,n) { 

  prob_poigam2<- (r^(n+a-1)*exp(-r*(t1+1/b))) 

  return(unionvector=c(prob_poigam2)) 

} 

 

area2<-function(n) integrate(prob_poigam2, lower=0, upper=0.024,n=n )$value 

v.areapoigam1<- Vectorize(area2) 

n =c(seq(1,22,by=1)) 

v.areapoigam1(n) 

 

post.prob.poi.gam.t400<- v.areapoigam1(n)/normalizing.const.poigam(n) 

 

 

#Model for t2=500 

t2=500 

prob_poigam1<- function(r,n) { 

  prob_poigam1<- r^(n+a-1)*exp(-r*(t2+1/b)) 

  return(unionvector=c(prob_poigam1)) 
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} 

area1<- function(n) integrate(prob_poigam1, lower=0, upper=Inf, n=n, abs.tol 

= 0L )$value 

normalizing.const.poigam<- Vectorize(area1) 

n=c(seq(1,22,by=1)) 

normalizing.const.poigam(n) 

 

prob_poigam2<- function(r,n) { 

  prob_poigam2<- (r^(n+a-1)*exp(-r*(t2+1/b))) 

  return(unionvector=c(prob_poigam2)) 

} 

 

area2<- function(n) integrate(prob_poigam2, lower=0, upper=0.024, n=n)$value 

v.areapoigam1<- Vectorize(area2) 

n =c(seq(1,22,by=1)) 

v.areapoigam1(n) 

 

post.prob.poi.gam.t500<- v.areapoigam1(n)/normalizing.const.poigam(n) 

 

 

#Model for t3=500 

t3=600 

prob_poigam1<- function(r,n) { 

  prob_poigam1<- r^(n+a-1)*exp(-r*(t3+1/b)) 

  return(unionvector=c(prob_poigam1)) 

} 

area1<- function(n) integrate(prob_poigam1, lower=0, upper=Inf, n=n, abs.tol 

= 0L )$value 

normalizing.const.poigam<- Vectorize(area1) 

n =c(seq(1,22,by=1)) 

normalizing.const.poigam(n) 

 

prob_poigam2<- function(r,n) { 

  prob_poigam2<- (r^(n+a-1)*exp(-r*(t3+1/b))) 

  return(unionvector=c(prob_poigam2)) 

} 

 

area2<-function(n) integrate(prob_poigam2, lower=0, upper=0.024,n=n )$value 

v.areapoigam1<- Vectorize(area2) 

n =c(seq(1,22,by=1)) 

v.areapoigam1(n) 

 

post.prob.poi.gam.t600<- v.areapoigam1(n)/normalizing.const.poigam(n) 

 

 

#These are the posterior probabilities at t=400,500,600 for this conjugate 

model 

print(post.prob.poi.gam.t400) 

print(post.prob.poi.gam.t500) 
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print(post.prob.poi.gam.t600) 

 

 

 

############## POISSON INVERSE GAMMA ************** 

 

#Poisson-inverse gamma example 

library(invgamma) 

p.prior<- 0.3 

R0<- 0.024 

beta<- function(alpha){R0*(alpha+1)} 

eq<- function(alpha) {p.prior-pinvgamma(R0, alpha, beta(alpha))} 

alpha.sol<- uniroot(eq, c(1,10))$root 

beta.sol<- beta(alpha.sol) 

print(alpha.sol) 

print(beta.sol) 

 

# Model for t1=400 

t1=400 

poi.invgam1<- function(r,n) { 

  poi.invgam1<- r^(n-a-1)*exp(-(r*t1+b/r)) 

  return(unionvector=c(poi.invgam1)) 

} 

 

area1<- function(n) integrate(poi.invgam1, lower=0, upper=Inf, n=n, abs.tol = 

0L )$value 

nonconj.normalizing.const<- Vectorize(area1) 

n =c(seq(1,30,by=1)) 

nonconj.normalizing.const(n) 

 

poi.invgam2<- function(r,n) { 

  poi.invgam2<- r^(n-a-1)*exp(-(r*t1+b/r)) 

  return(unionvector=c(poi.invgam2)) 

} 

 

area2<- function(n) integrate(poi.invgam2, lower=0, upper=0.024,n=n )$value 

v.areapoigam1<- Vectorize(area2) 

n =c(seq(1,30,by=1)) 

v.areapoigam1(n) 

 

post.prob.poi.invgam.t400<- v.areapoigam1(n)/nonconj.normalizing.const(n) 

 

# Model for t2=500 

t2=500 

poi.invgam1<- function(r,n) { 

  poi.invgam1<- r^(n-a-1)*exp(-(r*t2+b/r)) 

  return(unionvector=c(poi.invgam1)) 

} 
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area1<- function(n) integrate(poi.invgam1, lower=0, upper=Inf, n=n, abs.tol = 

0L )$value 

nonconj.normalizing.const<- Vectorize(area1) 

n =c(seq(1,30,by=1)) 

nonconj.normalizing.const(n) 

 

poi.invgam2<- function(r,n) { 

  poi.invgam2<- r^(n-a-1)*exp(-(r*t2+b/r)) 

  return(unionvector=c(poi.invgam2)) 

} 

 

area2<- function(n) integrate(poi.invgam2, lower=0, upper=0.024,n=n )$value 

v.areapoigam1<- Vectorize(area2) 

n=c(seq(1,30,by=1)) 

v.areapoigam1(n) 

 

post.prob.poi.invgam.t500<-v.areapoigam1(n)/nonconj.normalizing.const(n) 

 

# Model for t3=500 

t3=600 

poi.invgam1<- function(r,n) { 

  poi.invgam1<- r^(n-a-1)*exp(-(r*t3+b/r)) 

  return(unionvector=c(poi.invgam1)) 

} 

 

area1<- function(n) integrate(poi.invgam1, lower=0, upper=Inf ,n=n, abs.tol = 

0L )$value 

nonconj.normalizing.const<- Vectorize(area1) 

n =c(seq(1,30,by=1)) 

nonconj.normalizing.const(n) 

 

poi.invgam2<- function(r,n) { 

  poi.invgam2<- r^(n-a-1)*exp(-(r*t3+b/r)) 

  return(unionvector=c(poi.invgam2)) 

} 

 

area2<- function(n) integrate(poi.invgam2, lower=0, upper=0.024,n=n )$value 

v.areapoigam1<- Vectorize(area2) 

n=c(seq(1,30,by=1)) 

v.areapoigam1(n) 

 

post.prob.poi.invgam.t600<- v.areapoigam1(n)/nonconj.normalizing.const(n) 

 

#These are the posterior probabilities at t=400,500,600 for this nonconj 

model 

print(post.prob.poi.invgam.t400) 

print(post.prob.poi.invgam.t500) 

print(post.prob.poi.invgam.t600) 
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########################################################################### 

############################### NORMAL INFERENCE ######################### 

 

 

#Normal-Normal example 

delta=8 

sigma=17.4 

n=30 

 

hypothesized_vals = c(seq(-10,7,by=0.10)) 

estimate_sigma<- function(delta,prior) { 

  estimated_sigma <- (-delta)/qnorm((1-prior)) 

  return(estimated_sigma) 

} 

sigma0<- estimate_sigma(8,0.8) 

 

prob_norm.norm<- function(n,mean_diff) { 

  numerator=-((delta)/(sigma0^2)+(hypothesized_vals*n)/(2*sigma^2)) 

  denominator<- sqrt((1/sigma0^2)+n/(2*sigma^2)) 

  probability <- 1-pnorm(numerator/denominator) 

  return(unionvector<- c(probability)) 

} 

prob_norm.norm(n,hypothesized_vals) 

 

#Normal-Normal non bayesian estimation of sample size 

sample.size.est<- function(alpha,beta) { 

  n <- 2*(sigma/delta)^2*((qnorm(1-alpha)-qnorm(beta))^2) 

  return(n) 

} 

n<- sample.size.est(0.05,0.25) 

ceiling(n) 

#Computing the actual probability of type 2 error 

alpha=0.05 

beta=0.25 

k=qnorm(1-alpha) 

type2_beta<- pnorm(k-(delta/(sigma*sqrt(2/ceiling(n))))) 

print(type2_beta) 

 

#######**********  TRYING A NORMAL WITH CAUCHY PRIOR ********** 

 

sigma<- 17.4 

p.prior<- 0.8 

delta0<- 8 

sigma0<- -delta0/tan(pi/2-pi*p.prior) 

n<- 30 

p.post<- c() 

 

for (d in seq(-10.3, 5.3, by=0.1)){ 

  func<- function(x){exp(-(x-d)^2/(4*sigma^2/n))/(1+(x-delta0)^2/sigma0^2)} 
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  i<- round(10*(d+10.3)+1,0) 

  p.post[i]<- integrate(func, 0, Inf)$value/integrate(func, -Inf, Inf)$value 

} 

 

round(p.post,5) 

 

 

 

########################################################################## 

########################## BINOMIAL INFERENCE ############################ 

#Calculating Numeric Binomial\Beta example 

 

#Code to get alpha/beta parameter estimates 

N<- 110 

p.prior<- 0.4 

mode<- 0.23 

p0<- 0.25 

beta<- function(alpha) { (alpha-1)/mode+2-alpha} 

eq<- function(alpha) {p.prior-pbeta(p0,alpha, beta(alpha))} 

alpha.sol<- uniroot(eq, c(1,7))$root 

beta.sol<- beta(alpha.sol) 

 

print(alpha.sol) 

print(beta.sol) 

 

#Specifying a normalizing constant(denominator) for bin-beta posterior 

x = c(seq(1,100,by=1)) 

binbeta1 <- function(p,x) { 

  binbeta1<- (p^(x+a-1)*(1-p)^(N-x+b-1)) 

  return(unionvector=c(binbeta1)) 

} 

area<- function(x) integrate(binbeta1, lower=0, upper=1, x=x, abs.tol= 

0L)$value 

binbeta1.area<- Vectorize(area) 

x =c(seq(1,100,by=1)) 

binbeta1.area(x) 

 

binbeta2<- function(p,x) { 

  binbeta2<- (p^(x+a-1)*(1-p)^(N-x+b-1)) 

  return(unionvector=c(binbeta2)) 

} 

area<- function(x) integrate(binbeta2, lower=0, upper=0.25,x=x )$value 

binbeta2.area<- Vectorize(area) 

x =c(seq(1,100,by=1)) 

binbeta2.area(x) 

 

post_prob_binbeta=binbeta2.area(x)/binbeta1.area(x) 

print(post_prob_binbeta) #Looks good 
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### ########## CALCULATING BINOMIAL TRUNCATED NORMAL POSTERIOR 

N=110 

x = c(seq(1,100,by=1)) 

 

#The parameters are reused from the Bin/Beta example as it is impossible  

#to estimate them with this prior 

mu=0.5 

sigma=1/4 

 

#These constants basically disappear during integration. It's useless 

#regardless of what values they are 

alpha=(a-mu)/sigma 

beta=(b-mu)/sigma 

 

#Specifying the Normalizing constant(denominator) 

TN1 <- function(p,x) { 

  a1<- p^(x)*(1-p)^(N-x) 

  b1<- exp(-(p-mu)^2/(2*sigma^2)) 

  c1<- sigma*sqrt(2*pi)*(pnorm(beta)-pnorm(alpha)) 

  TN1<- (a1*b1)/c1 

  return(unionvector=c(TN1)) 

} 

 

area<- function(x) integrate(TN1, lower=0, upper=1, x=x, abs.tol= 0L)$value 

TN1.area<- Vectorize(area) 

x=c(seq(1,100,by=1)) 

TN1.area(x) 

 

#Specifying the Posterior function (numerator) 

TN2<- function(p,x) { 

  a2<- p^(x)*(1-p)^(N-x) 

  b2<- exp(-(p-mu)^2/(2*sigma^2)) 

  c2<- sigma*sqrt(2*pi)*(pnorm(beta)-pnorm(alpha)) 

  TN2<- (a2*b2)/c2 

  return(unionvector=c(TN2)) 

} 

area<- function(x) integrate(TN2, lower=0, upper=0.25, x=x)$value 

TN2.area<- Vectorize(area) 

x=c(seq(1,100,by=1)) 

TN2.area(x) 

 

post.TN.probs=TN2.area(x)/TN1.area(x) 

print(post.TN.probs)  

 

 

######################### SEQUENTIAL DOUBLE INTEGRAL EXAMPLE IN SECTION 4.1.3 

######### 

#Type 1 error (1-alpha) 

h1<- function(x, y) exp(-0.5*(x^2+y^2)) 
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F1<- function(x) { 

  fun <- function(y) (1/(2*pi)) * h(x, y) 

  integrate(fun, -Inf, k*sqrt(2)-x)$value 

} 

F1<- Vectorize(F1)  # requested when using integrate() 

 

eq_type1<- function(k) {integrate(F1, -Inf, k)} 

 

 

#The way I go about solving for the parameters is by testing numbers out 

 

#Try k=3 

k=k1=3 

eq_type1(k1) #0.9975426  

 

#Try k=2 

k=k2=2 

eq_type1(k2) #0.9620106   

 

#Try k=1.75 

k=k3=1.75 

eq_type1(k3) #0.9350068  

 

#The root is somewhere between k=1.75 and k=2 

 

#Try k=1.9 

k=k4=1.9 

eq_type1(k4) #0.9525778   

 

#Try k=1.8 

k=k5=1.8 

eq_type1(k5)#0.9413549  

 

#Try k=1.85 

k=k6=1.85 

eq_type1(k6) #0.9472036  

 

#Try k=1.88 

k=k7=1.88 

eq_type1(k7) #0.9499485, Close enough! So we set our k=1.88 

k=1.88 

 

 

#################################### 

#Type 2 error (beta) 

h<- function(x, y) exp(-0.5*(x^2+y^2)) 

F2<- function(x) { 

  fun<- function(y) (1/(2*pi)) * h(x, y) 

  area<-integrate(fun, -Inf, k*sqrt(2)-2*sqrt(n_star)-x)$value 
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} 

F2<- Vectorize(F2)  # requested when using integrate() 

eq_type2<- function(n_star) {integrate(F2, -Inf, k-sqrt(n_star))} 

 

 

#The way I go about solving for the parameters is by testing numbers out 

 

#Try n_star=3 

n_star=n_star1=3 

eq_type2(n_star1) #0.2535443   

 

#Try n_star=2 

n_star=n_star2=3.1 

eq_type2(n_star2)#0.2410883    

 

#Try n_star=3.5 

n_star=n_star3=3.5 

eq_type2(n_star3)#0.1963617   

 

#The root is somewhere in between 3 and 3.1 

 

#Try n_star=3.05 

n_star=n_star4=3.05 

eq_type2(n_star4) #0.2472497  

 

#Now, the root is somewhere between 3 and 3.05 

 

#Try n_star=3.03 

n_star=n_star5=3.03 

eq_type2(n_star5) #0.2497515, Close enough! So let n_star=3.03 

n_star=3.03 

 

 

###################################################### 

#DETERMINING THE SAMPLE SIZE (SEE SECTION 4.1.3)########## 

 

sigma=17.4 

alpha=0.05 

beta=0.25 

delta=8 

 

n=(n_star*2*sigma*sigma)/(delta^2) 

print(n) 

print(ceiling(n))# From this data, 29 patients are needed 

 

###################################################################### 
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