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ABSTRACT

Implementation of clinical trials is a necessary step in increasing medical knowledge,
such as providing information about the efficacy of an innovative medical device, procedure, or a
medication. To establish the efficacy, human participants are carefully selected based on their
characteristics suitable for the study. They are randomly assigned to either a treatment or control
group and are monitored and measured over time to detect any physical changes. Clinical data
obtained this way is vital in determining the efficacy of the tested product. In this thesis, we give
an overview of a broad range of statistical methodology used in analysis of clinical data. We
present techniques from survival analysis, longitudinal regression modeling, and Bayesian
monitoring of clinical trials. For each method, we discuss theoretical framework and illustrate

with an application to a suitable data set.
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CHAPTER 1
INTRODUCTION
1.1 Overview of Clinical Trials

A clinical trial is a research study, or investigation, performed in human subjects with the
purpose of evaluating the efficacy and/or safety of either an innovative medical device, medical
procedure, or medication that is administered to the treatment group patients as compared to the
control group patients who are administered a placebo or the standard therapy. The innovative
treatment is tested before it gets marketed to the general consumer population.

1.1.1. Carrying Out a Clinical Trial

To briefly summarize the process, for a clinical trial procedure to be carried out,
researchers must first select qualified candidates from a pool of individuals for their study. To do
so, they must find candidates who have certain characteristics suitable for their study. Once
qualified candidates are chosen, they are notified of their rights, benefits, and risks of
participating in these trials. This process is known as the informed consent process. During this
process, candidates (which we will now refer to as “patients”) sign a consent form, confirming
their intent to participate in the trial.

At enrollment for the clinical trial, patients receive an initial treatment. From there,
patients are expected by the researchers to make follow-up visits, meaning that patients must
check into the research lab in timely intervals specified by the researchers, to monitor any
physical changes resulting from the treatment. After the last scheduled follow-up visit, each
patient has the choice of continuing in the study or dropping out. Those who want to continue
must sign another informed consent form, accepting the willingness of continuing in the study.

Those who wish not to continue can drop out of the study. There are many reasons why a patient



would want to drop out of the study. These reasons include either adverse life events (such as
mental health problems, contracting a certain disease, etc.), or voluntary discontinuation,
meaning maybe the trial was not effective for the patient.

A clinical trial may be stopped earlier when a predetermined number of subjects have
been accrued, or if the collected data strongly prove the efficacy of the tested treatment or show
that the treatment is harmful. We will illustrate the concept later in Chapter 4.

1.1.2 Phases of a Clinical Trial

According to the National Institute of Aging (2020), clinical trials typically progress
through four phases to test a treatment, find the appropriate dosage, and look for side effects.
Now if, for example, after the first three phases, the researchers find a drug or medical device to
be safe and effective, then the FDA approves it for clinical use and continues to monitor its
effects.

Clinical trials are divided and described by their phase. These four phases are
summarized as follows.

Phase I: A new product or treatment is tested on a small group of healthy subjects
(typically 20-80 individuals) to determine its safety.

Phase I1: This is where the initial clinical investigation begins. A phase Il trial tests the
product or treatment on a larger group of patients (typically 100-300 individuals) to determine,
from preliminary data, the effectiveness of the drug on patients who have a certain disease or
condition. In this phase, the drug’s safety and side effects are closely monitored.

Phase Il1: More information about safety and effectiveness of either the drug or treatment
is gathered. The test is usually carried out on a very large group of patients (typically 500-3000)

with diverse backgrounds. In this stage, the new product is typically compared to either a



placebo or a standard treatment, where the side effects and efficacy are closely observed in the
comparison. After this phase is completed, if the FDA agrees that the trial results are positive, it
will approve the experimental drug or device. From there, the drug is then marketed to the
consumer.

Phase IV: This phase occurs after the FDA approves the experimental drugs or devices
for marketing. Known as the post-marketing surveillance phase, the device or drug’s
effectiveness and safety is then monitored in the general population after the product is marketed
to collect additional information on the product’s safety and efficacy over an extended period.
Sometimes, the side effects may not become clear until more people have taken it over a longer
period.

1.2. Literature Review

The use of statistical methods in clinical data has become an increasingly important topic
through advances in healthcare and technology. In this thesis we present statistical techniques
from survival analysis and regression analysis for longitudinal data.

Survival analysis focuses on modeling the distribution of the time until occurrence of an
event (for example, death or remission) in the presence of censored observations. Observations
are called censored if the person drops out of the study before occurrence of the event. Survival
function for times to event (the probability of exceeding certain time) is modeled by a product-
limit estimator (known commonly as the Kaplan-Meier estimator). Proposed by Kaplan and
Meier (1958), this estimator is a step-function with discontinuities at the time of event. The
Kaplan-Meier estimator, however cannot accommodate the presence of predictor variables.

To do so, Cox (1972) extended the work of Kaplan and Meier by proposing a regression

model to fit life table data. His work, widely known in medical statistics as the Cox proportional



hazards model, assumes measurements on each individual are collected, and the relation between
the distribution of time-to-event is modeled through what is known as a hazard function. Within
the same year of Cox’s publication, a statistician named Nelson (1972) developed the theory of
hazard plotting. In his paper, the author presents an application to data plotting by modeling
censored data through the use of a hazard function involving a cumulative distribution function.

Transitioning away from the field of survival analysis, longitudinal data analysis is
another technique used in medical data for modeling repeated measures on specific individuals,
over periods of times, ranging from a few days to even a few years. In their paper, Caruana et al.
(2015) state that there are generally two types of designs incorporating longitudinal data: the
standard longitudinal design and the cross-sectional design. The longitudinal design collects data
repeatedly over time on the same individuals, whereas the cross-sectional design measures
multiple variables at a single time point without regard to the influence of time on these
variables. Both the standard longitudinal and cross-sectional designs have distinct advantages.
An advantage of a standard longitudinal design is that it is useful for evaluating the relationship
between risk factors causing a disease and the outcomes of a clinical trial treatment observed
over a period of time. On the other hand, an advantage of using a cross-sectional study is that it
is quicker to set up which may be useful in performing quicker evaluations.

It is often noteworthy to know that clinical trials are often very expensive to carry out and
require lots of optimization. Gupta (2012) noted that there are two statistical methods used in
evaluation of efficacy of clinical trials: frequentist and Bayesian. Frequentist methods model the
prior information through the design of the clinical trial, but not the analysis of data. Bayesian,

on the other hand, provides a mathematical method of calculating the likelihood of future events,



given knowledge of past events. In this thesis, we discuss both frequentist and Bayesian analysis
techniques.
1.3. A Brief History of Clinical Trials

Clinical research has been ever evolving throughout the centuries. The first documented
clinical trial (non-medical) happened during circa 500 BCE in Babylon. During that time, King
Nebuchadnezzar (Bhatt 2010) ordered his people to eat meat and drink wine, believing the diet
would keep them in good shape; however, several citizens objected to his rule by eating
vegetables instead. Therefore, Nebuchadnezzar experimented by allowing 10 days for the
objectors to follow a diet of legumes. After 10 days, the king found out that the vegetarians were
more nourished than the meat-eaters. Thus, the king permitted the vegetarians to continue their
diet.

As time progresses, more advances have been made to clinical trials. A noteworthy
example was the development of a controlled trial. Discovered by James Lind (Bartholomew,
2002) in the mid-18th century, a controlled trial is a study design that randomly places
participants into an experimental group or control group. The difference between the outcome
variables in the two groups is then investigated.

After the basic approaches to clinical trials were introduced in the 18th century, the
efforts were made to refine both the design as well as the statistical aspects. It took another
century of research before the emergence of a significant milestone in clinical trials, known as
the placebo. First introduced in the early 1800s, the placebo was referred to as “an epithet given
to any medicine more to please than benefit the patient” (Shapiro 1964, p. 52). Putting this quote

into layman’s terms, the placebo is used in clinical research as a “dummy drug” to instill



confidence within a patient, making them believe that the treatment might work. The effects of
placebos are then compared to an active treatment to establish validity.

As scientific advances continued to occur in clinical trials, new ethical and regulatory
challenges emerged. The ethical framework for human experimentation dates back to the ancient
Hippocratic Oath, which mentions that the primary duty of a physician is to avoid harming the
patient; this oath, however, it was violated many times in past human experimentations (such as
Nazi human experimentations during World War Il). To solve this issue, several laws and
regulations were created in the mid-20th century. The first was the Nuremberg Code of 1947
which stressed voluntary consent in clinical trials. Another notable one was the Helsinki
Declaration created in 1964. Widely regarded as the cornerstone document on human research
ethics, the Helsinki Declaration established regulatory guidelines outlining the general principals
in clinical trials as well as the rights, risks, and privacy of using humans in medical research
(Bhatt, 2010).

Today clinical trials have been heavily regulated by the government as a response to
ethical guidelines. Founded in 1862, the FDA has evolved as one of the world’s foremost
institutional authorities for conducting and evaluating controlled clinical drug trials (Davies and
Kermani 2008). For a new drug to be marketed, the FDA requires that at least two adequate and
well-controlled clinical trials be conducted to provide substantial evidence regarding the efficacy
of the drug product under investigation (Davies and Kermani 2008).

1.4. Aims and Objectives for Thesis

In this thesis, we explore properties of clinical data using various statistical methods. All

datasets and scenarios are simulated except for the publicly available Primary Biliary Cirrhosis

dataset which we will analyze in Chapter 2. Understanding these techniques is not only



necessary for clinical trials, but other related fields such as epidemiology. Below we summarize
to topics that this thesis explores.

Chapter 2 is devoted to survival analysis methodology. In the field of survival analysis,
we estimate the distribution of time until an adverse event and compare the distributions in two
or more distinct groups using the Kaplan-Meier estimator of the survival function and log-rank
test. Furthermore, we dive deeper into investigating how certain factors can influence the rate of
a particular event happening (such as infection or death) through the use of the Cox proportional
hazards model.

In medical data, most measurements are collected through a longitudinal study, meaning
repeated observations of the same variables in the same individuals are collected through periods
of time. Chapter 3 presents regression models for longitudinal data from different settings where
the response variables have normal, gamma, binary, and Poisson distributions.

In Chapter 4 we discuss interim data monitoring in clinical trials. With a standard
approach, clinical trials continue until the pre-determined number of patients has been accrued
and followed for a certain period of time. The required number of patients is determined based
on an acceptable power of the statistical test of superiority of the product under investigation.
However, if researchers have a strong belief in superiority of the tested product, they might
conduct a sequential testing that allows stopping a trial earlier if the data show enough evidence.
Chapter 4 explores the concept of interim data monitoring where both the classical group
sequential testing procedure and Bayesian sequential procedure are discussed and illustrated with

several clinical trial examples.



CHAPTER 2
SURVIVAL ANALYSIS
2.1. Theoretical Framework
2.1.1 The Survival, Hazard, and Cumulative Hazard Functions
Let T denote the survival time of an individual. Assume that T' is a random variable with

the probability density function f(x) . The density function f(x) along with the cumulative
distribution function F(x) = foxf(u)du does not provide much information about the

individual’s chance of survival past a fixed time t. Therefore, the survival, hazard, and
cumulative hazard functions are used instead.

The survival function is given as S(t) = 1 — F(t) = P(T > t). Therefore S(t) is the
probability of survival past time t. The relation between f(t) and S(t) is derived as f(t) =
F'(t) = (1-S®) = =S'(0).

The hazard function is defined as the instantaneous rate of failure, given that the
individual has survived past time t. The expressions that connect the hazard function with

f(t),F(t),and S(t) are obtained as follows:

_ qi, PA<Tst46t|T>t) _ . P(<Tst+8t) 1 .  F(t+8)-F(t) _ f(t) _ _S'(t) _
h(t) = éf% St T Sto0 StP(T>H)  S(t) §t=0 5t TS s

—(nS(t))".

In addition to the hazard function, it is sometimes convenient to operate with the

du =

cumulative hazard function defined as H(t) = [ h(w)du = — ftdh;s(u)

0

— [ dInS(w) = — InS(¢) + InS(0) = — InS(t) since S(0) = 1 and In(1) = 0.



2.1.2. The Kaplan-Meier Estimator

The Kaplan-Meier estimator, also known as the product-limit estimator, is a
nonparametric method widely used to estimate the survival function from lifetime data. The
specificity of the Kaplan-Meier estimator is that it can accommodate censored observations. If
for an individual the lifetime data are not observed until an event but rather until the individual
drops out of the study, the lifetime observation is referred to as right-censored. It is known that
the individual hasn’t experienced an event up to certain time, and nothing can be said about
survival of the individual past that time. In terms of medical applications, the Kaplan-Meier
estimator is used to estimate the survival curve of every patient that is followed until death or
censoring.

The estimator of the survival function S(t), the probability that life is longer than t, is
given by S(t) = [Lit;<e (1 - %) where ¢; is the time of the ith event occurring, d; is the number

of individuals experiencing the event at time ¢t;, and n; is the number of individuals who have
survived up until just before time t;. These individuals are termed “at risk” at time t;. This
expression is nothing more than the maximum likelihood estimator derived as follows:

Let0 =t, <t; < t, <-- < t, denote the k distinct event times. Let T; =
P(T>¢t|T>t,_1)i=1,..,k, be the conditional probabilities that an individual survives past
time ¢; , given that the individual has survived past time ¢t;_,. The survival function S(t) at time
t; is the product of ;’s; that is, S(tj) = H{zlni. The probabilities 7; can be estimated by the
method of maximum likelihood. Each of the d; individuals who experience an event at time
t; contributes a 1 — m; term to the likelihood function, whereas each of the n; — d; individuals

who survive past time t; contributes a 7r; term to the likelihood function. Consequently, the



likelihood function has the form L = [T¥., (1 — m)%m]""%. The log-likelihood function
becomesInL = ¥ . d; In(1 — 7;) + ¥ ,(n; — d;) In7r;. Differentiating with respect to 7; and
setting the derivative to zero, we see that the estimators 7;’s solve ddl“ ln=n, = 0= ———

""ﬁ;id" .From here, 1; =1 — Z—z and S(tj) = (1 - —) Now take any t. Since t; <t < tj;4
forsome j = 0, ..., k, and there are no events in the open interval (t;, t;,,), we have that S(t) =
S(t;) and the result follows.

To find the variance of the Kaplan-Meier estimator, we note that d;s can be assumed to

follow a binomial distribution with parameters n; and probability of event m; where we estimate

fi; = Z—i We can approximate Var(#;) ~ @ Further, consider In[$(t)] =

1

{=1 In (1 — ;). Now we will apply the delta method that states that if {X,,,n > 1} isa

sequence of random variables such that vn(X,, — 6) —— N(0,0?), in distribution, and there
exists a function g(x) that is differentiable at 6 where g'(8) # 0, then
Vn(g(X,) — g(6)) —N (O, az(g’(e))z). By the delta method and the approximate

independence of the 7;'s,

Var(In[ S(t))—ZVar In(1 —7;)] =z]:(

~
IQ..
nl P
-

10



Finally, recalling that for ¢, ¢; < t < t;,,, S(t) = S(t;), and writing $(t) = e 6@ =

eln @ (tf)), we use the delta method again to obtain the Greenwood’s formula for variance
Var ($(t)) = Var (3(t))) = [$(¢,)] Var[in(S(t; )] = [§(t)]22i:tist#;i)m.
2.1.3. Kaplan-Meier Survival Curve
The Kaplan-Meier survival curve is the plot of the Kaplan-Meier estimator of the survival
function S(t) against time t. S(t) is represented as a step function that decreases at the times of
events, and remains constant between two observed event times. Traditionally, event times for
censored observations are denoted by an “x”, and if an observation happens to be censored at an
event time, the “x” is placed at the bottom of the step.
2.1.4. The Nelson-Aalen Estimator
The Nelson-Aalen estimator is a nonparametric estimator of the cumulative hazard rate

function from censored event data. Let t; < t, < --- < t,, represent the times of events, d; be the

number of observed events at time ¢t;, and n; be the number of subjects at risk. The Nelson-Aalen

estimator for the cumulative hazard rate is given by H(t) = Ztist% .

To derive this estimator, consider the relation S(t) = exp (—H(t)) and the Kaplan-Meier

estimator S(t) = [[;. t<t (1 - %) as an estimator of S(t). If d; < n;, then In (1 - %) ~ -4

n;

and therefore, A(t) = —In (S“(t)) = —In Tl <t (1 = %) = — N geen (1- %) = Xy <. Note that

from here, the Nelson-Aalen estimator of the survival function has the form S(t) =

exp (— Yest di). The variance of H(t) can be approximated by Var[—In(S(t))] =

Var[in($(t;))] = X_,—%—, which we obtained above on our way to the Greenwood’s

=1 (ny—dpn;

formula.

11



2.1.5. The Log-Rank Test

The log-rank test is a test of hypotheses that compares survival functions as functions of
time for two categories, for example, survival functions for men vs. women or for intervention
group vs. control group. The objective is to test Hy: S;(t) = S,(t) forall t > 0 against
Hy: S;(t) # S,(t) for some t = 0. Below we derive the expression for the chi-squared test
statistic. Lett; < t, < --- < t; denote the event times, and let d,; and d,; be the number of
individuals who experience the event at time t; in categories 1 and 2, respectively. Also denote
by n,; and n,; the number of individuals at risk at time ¢t; in categories 1 and 2, respectively. We
have that dy; + d,; = d;, the total number of individuals who experienced the event at time t;,

and ny; + ny; = n;, the total number of at-risk individuals at time ¢;. Under the null hypothesis,

d,; has a hypergeometric distribution with mean E(d,;) = ”%dl and variance Var(d,;) =

nynyi(ni—d;)d;

where
n?(n;—1)

2
. - - - - 2 _ U
,i =1,..., k. The test statistic is defined as y* = (—Var(u))

U =Yk (dy; — E(dy)) and Var(U) = Yk, 2it2i®i=d)di ynder the null hypothesis, the test

n?(n;—1)
statistic has a y2-distribution with one degree of freedom.
2.1.6. Parametric Estimation of Survival Function
2.1.6.1. Definition
The survival function S(t) is estimated by a parametric method if an explicit algebraic

expression is for this function is assumed known and the parameters are estimated from the data.
For example, the survival function for a Weibull distribution is widely implemented. A Weibull
distribution has the density f(t) = alt®le=2% for t > 0 and @, 2 > 0, which for & = 1

reduces to an exponential distribution with the density f(t) = 2e=*t,1 > 0,t > 0. The estimator

12



for the survival function of a Weibull distribution is S(¢t) = e~*“, ¢t > 0, which reduces to an
exponential survival function $(t) = e ¢, t > 0, when a = 1.

The parameters are estimated by the method of maximum likelihood. However, since
censored data are present, they have to be taken into consideration when deriving the likelihood
function.

2.1.6.2. Random Censoring Model

A random censoring model assumes that times to event and censoring times are
independent. Denote by T; the time to event of the ith subject, and let C; be the censoring time of
the ith subject. We assume that T; has pdf f;(t) and cdf F;(t), and C; has pdf g;(t) and cdf G;(t).
The subjects for which an event occurs (termed uncensored), the time to event is smaller than the
censoring time, that is, T; < C;, while for censored observations, C; < T; .

Thus, the contribution to the likelihood function of an uncensored ith subject with the
observed event time ¢; is limg,oP(T; € (t;, t; + dt), C; > t;)/dt = f;(t)(1 — G;(t)), and the
contribution of the ith subject censored at time ¢t; is limg;_,oP(C; € (t;, t; +dt), T; > t;)/dt =
gi(t)(l — Fi(t)). Let §; = 1 if the ith observation is uncensored and 0, otherwise. Therefore, the

likelihood function for the survival with random censoring is:

n

L= [iAeoa - 6eon® (1 - Ft)gier "

= [Ty (1 — G ()% (g(e)) 5 [Ty £t (1 = File))

. 1-6;
o [T, fit)% (1 - Fi(t))
The log-likelihood function is proportional to

InL o Y7, 6;Infi(t) + Xii1(1 = 6;) In(1 — F;(ty)).

13



By maximizing this function, we find the parameters of the cdf F and estimate the survival
functionas S(t) = 1 — F(t),t = 0.
2.1.6.3. The Weibull Distribution Model
Suppose the time to event T; has a Weibull distribution with pdf f(t) =
alt® e~ o 1> 0,t > 0,and cdf F(t) = e, a,1 > 0,t > 0. We estimate the parameters

« and A by the method of maximum likelihood. The log-likelihood function is proportional to

n n
InL(a, 1) « Z 8;In fi(t)) + 2(1 —s)In(1 - F(t)
i=1 i=1
n n
- Z 5, In(adt; = Le=2{) + 2(1 — 5 In(e)
i=1 i=1
n n n n n
- 1naZ5i + ln/lz 8 + (a — 1)Z5i Int, —AZ 5t —12(1 —5)te
i=1 i=1 i=1 i=1 i1
n n n n
« lnaz 5; + 1n,12 5; + aZ&- Int; —AZ g
i=1 i=1 i=1 1

i=
Thus, the maximum-likelihood estimators @ and A are numeric solutions to the system of normal

equations

dInL(a, i) Y8 N -
— ==y E §;Int; — 4 E t¥Int; ,
aa a , .
i=1 i=1
n

dlnL(@A) 0— nL6; Z N
——=0= — — t; .
daA A

i=1

The estimated survival function has the form S(t) = e‘m, t=>0.

14



2.1.7. The Weibull Regression Model

The Weibull regression model estimates the survival function as $(t) = e‘Zta, t=>0,
where 4 = e~BotBixat+Bixi)/3 and @ = 1/6. The maximum-likelihood estimates &, By, ..., B«
are the numeric solutions of the normal equations where the log-likelihood function f has the

form:

S

InL(By, ..., Br, 0) & —lnazn: 6; — %Z[Si(ﬁo + Bixip + o+ Brxix)] + (%— 1)211:61- Int;

i=1
~ Li=1€XP E (nt; = (Bo + Prxis + - + .kaik))]-

To check goodness of fit of the fitted model, the deviance test is employed. The test

statistic, called the deviance, is computed as

deviance = —2(In L(null model) — In L(fitted model))
where the fitted model is the full model with k + 1 regression coefficients and the scale
parameter . The null model is the intercept-only model with 3, and ¢ as parameters.

Under H,, the test statistic follows a y2- distribution with the number of degrees of
freedom calculated as the difference between the number of parameters in the two models; that
is, the number of degrees of freedom is k + 2 — 2 = k, the same as the number of predictors in
the fitted model.

2.1.8 The Cox Proportional Hazards Model

The Cox proportional hazards model is customarily defined in terms of the hazard
function. It is written as h(t, x, ..., Xx, B1, .-, Bi) = ho(t) exp(Byixq + -+ + Brxi) wWhere hy(t)
is called the baseline hazard function. It represents the hazard function when all the predictors

are equal to zero, which corresponds to an often-hypothetical individual called a baseline

15



individual. The quantity exp (81x; + -+ + Brxy) is referred to as the relative risk of an
individual with predictors xg, ..., x. The term “proportional hazards” symbolizes the fact that in
this model, the ratio of the hazard functions for two individuals with relative risks exp (51x11 +
o+ Brxqk) and exp (B1x21 + -+ + Brxay) 1S @ constant, not depending on time:

h(t,x11,--wX1k:B1--Bk) — ho(t)exp (B1X11+ -+ BrX1k) _ &Xp (Bix11++Prx1k) = constant
h(t,x21,.-wX2k:B1,-+Lk) ho(t)exp (B1Xz1+ -+ PBrX2k) exp (B1xz1++Brx2k)

Alternatively, the Cox proportional hazards model can be formulated in terms of the

survival function. To derive the alternative definition, we note that

t
S(t) =exp (—f h(ulxq, x5, ..., X1, B1, ...,ﬁk)du>
0

= exp (‘f ho(u) exp(Byxy + - + Brxy) du) = [So(D]"
0

t
= Jo ho(Wdu s the haseline

where r = exp(B1x1 + -+ + Brxy) is the relative risk, and Sy (t) = e
survival function for the baseline individual.

The regression coefficients g, ..., B can be estimated by maximizing the partial-
likelihood function, which is defined as the portion of the likelihood function in the random
censoring model (see Section 2.1.6.2) that does not depend on time t. To derive the expression

for the partial-likelihood function, we proceed as follows. We start with the multiplicative factor

of the likelihood function that depends only on the distribution of the time-to-event:

1-6;

=TI, @)% (1 -F@))
Next, we let the time-to-event distribution for the ith subject have the survival function
S;(t), and hazard function h;(t;) = ho(t;) exp(B1xq + -+ + Brx),i = 1....,n. Using the

expression f;(t;) = h;(t;)S;(t;), we obtain
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L= l;[fi(ti)ai (Si(ti))l_ai = liz_l[(hi(ti)si(ti))ai (Si(ti))l_Si

8
n n S
h (¢, l
=ﬂ(hi<ti)>6isi<ti>=l—[<%) PO
i=1 i=1 \SJER() TR JERTED)
[

ﬁ ( eP1xint+PBrxik >6i ﬁ z

_ : heD) | Sied .
ST ; j L i\t
i=1 ZJ'ER(ti)eﬁlxj1+ P i=1 \JER(ty)

Here R; represents the relative-risk set at time t;. Now, we discard the portion that depends on

times t;,i = 1, ..., n, and define the partial-likelihood function as

n

eBrxirt+Brxik S
by B = ] |
p(ﬁl ﬁn) <2jER(t.) eﬁlxj1+"'+ﬁkxjk>

i=1 L

Next, the estimators of 5, ...., By are obtained by maximizing the log-partial-likelihood function

n n
InL,(B1, ..., Bx) = Z 8;(Brxi1 + -+ + Brxix) —Z 6;In z ePrxjut+Bickie
i=1 i=1

JER(t)

The estimates f3;, ..., Bx are numerical solutions of the partial-likelihood score equations

olnL,(By, ... B n no Y x, e Bixjit B
JCIEEY = Z 15ixim - Z 15i JERMEy) Tym =0, m=1,..,k.
1= 1=

B T jeateg PRI HBw)
2

The estimates of the regression coefficients 3, ..., B for the Cox proportional hazards
model yield the following interpretation. For a numeric predictor, say, x,, the percent change in

the estimated hazard function when x; is increased by one unit is equal to

E(t,xl + 1, X7, ...,xk,ﬁl,ﬁz, ...,3]() - i\l(t, X1, X2, ...,xk,ﬁl,ﬁz, ""ﬁk)

= — . -100%
h(t, x1, %3, ) X, B, B2y e Bic)

_ <fzo(t) exp(Bi(x1 + 1) + Boxs + - + fixic)

- : . . - 1) +100% = (ePr — 1) - 100%.
ho(t) exp(Brx1 + Boxy + -+ Prxy)
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If x; is a 0-1 predictor, the percent ratio of the estimated hazard functions for x; = 1 and x; =

0 is equal to

ﬁ(t; 1; X2y ey X Bli BZ' '"!Bk) .
i‘i(t, 0, X2y e s Xy 31' BZ' ""Bk)

_ ho(t) eXP(ﬁ1 1+ foxy + o+ ﬁkxk)
ho(0) exp(ﬁl 0+ fxy + o + kak)

100%

+100%

= eP1-100%.
Remark: A noteworthy parametric model, sharing characteristics of the Cox proportional
hazards model, is the Weibull regression (see Section 2.1.7) that models the survival function as
S(t) = e~ ", t > 0, where A = e~FotFrxit++Ekxi)/7 and o = 1/. To give interpretation of

the estimated regression coefficients, we note that the hazard function of the Weibull distribution

is of the form h(t) = —% = aAt® 1 = ho(t) exp{Bix;y + -+ + Brxy} Where hy(t) =
Bo 1 Bi

%e_7t5_1, and g = i = 1,..., k. This shows that the Weibull regression is a special case

)
g

of the Cox proportional hazards model, and 3; = — 5 ,i =1,..., k, are interpreted as in the Cox

5
model, in terms of estimated percent change (or percent ratio) of the hazard function.
2.2 Application of the Survival Analysis
2.2.1. Data Description

The Primary Biliary Cirrhosis dataset presents a clinical trial of a liver disease conducted
between the years 1974 and 1984. This dataset was obtained publicly through kaggle.com. The
goal of this study was to determine the effectiveness of a placebo drug, known as Penicillamine,
on the survival of the patients. The study originally consisted of a total of 424 patients; however,
112 cases did not participate in the clinical trial. Therefore, the patients not participating were

omitted from the dataset, reducing the dataset size down to 312 patients. The table below (see

Table 1) lists all the variables used in the analysis, along with their attributes.
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TABLE 1. Description of the Variables in the Primary Biliary Cirrhosis Dataset

Name Description Type Values
. The number of days between registration . Ranges from 41 to
time Numeric .
and event 4795 days until event
0=Alive and doesn’t
_ Categorical need _Iiver transplant
status Status of patient N . 1=Alive but needs
umeric :
liver transplant
2=Dead (i.e., censored)
i . Binary 1=D-Penicillamine
trt Type of drug that patient received categorical | 2=Placebo
age Age of patients in years Numeric Ranges from 26 to 78
years old
sex Sex of patient Binary . O=Female, 1=Male
categorical
Presence of ascites, the accumulation of | Binary 0=No
ascites fluid in the peritoneal cavity categorical | 1=Yes
hepato Abnormal enlargement of the liver not Binary 0=No
related to the underlying disease. categorical | 1=Yes
: Blood vessel malformations in the skin Binary 0=No
spiders . _
categorical | 1=Yes
Swelling caused by excess fluid trapped | Numeric 0=No edema present,
in the body’s tissues categorical | therefore no diuretic
therapy is needed
edema 0.§:Edema is present
without diuretics
1=Edema is present
despite diuretic
therapy
Amount of Bilirubin, a yellowish Numeric Ranges between
bilirubi pigment made from the breakdown of red 0.3mg/dl to 28mg/dl
ilirubin bl S 1
ood cells, in milligrams per deciliter of
blood (mg/dl)
Amount of cholesterol, in milligrams per | Numeric Ranges between
cholesterol | deciliter of blood (mg/dl) 120mg/dl to
1,775mg/dl
Amount of albumin, a protein made by Numeric Ranges between
albumin the I_iver_ to prevent_blood fluidg f_rom 1.96mg/dl to
leaking into other tissues, in milligrams 4.64mg/dl

per deciliter of blood (mg/dl)
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TABLE 1. Continued

Name Description Type Values
copper Amount of copper (in micrograms per Numeric Ranges between
day, ug/day) 4ug/day to 588 ug/day
Alkaline phosphate concentration in Numeric Ranges between
alk.phos | U/Liter 289U/L.iter to
13,862U/L.iter
Aspartate aminotransferase (AST) Numeric Ranges between
ast concentration in U/ml 26.35U/ml to
457.25U/ml
trig Triglyceride concentration in mg/dl Numeric Ranges between
33mg/dl to 598mg/dl
Amount of platelets per cubic mi/1000 Numeric Ranges between
62ml/liter to
platelet 563mi/liter
Prothrombin time, the amount of time it | Numeric Ranges between 9
protime takes for blood to clot seconds to 17.1
seconds
Histologic stage of disease which Categorical | Stages 1,2,3, and 4
describes how much damage has been Numeric
done to the liver.
Stage 1=Inflammation and damage to the
stage walls of medium-sized bile dycts
Stage 2=Blockage of small bile ducts
Stage 3=Beginning of scarring
Stage 4=Permanent Cirrhosis has
developed, resulting in severe damage to
the liver
copper Amount of copper (in micrograms per Numeric Ranges between
day, ug/day) 4ug/day to 588 ug/day
Alkaline phosphate concentration in Numeric Ranges between
alk.phos | U/Liter 289U/L.iter to
13,862U/Liter
Aspartate aminotransferase (AST) Numeric Ranges between
ast concentration in U/ml 26.35U/ml to
457.25U/ml
trig Triglyceride concentration in mg/dl Numeric Ranges between
33mg/dl to 598mg/dlI
Amount of platelets per cubic ml/1000 Numeric Ranges between
platelet 62ml/liter to
563ml/liter
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2.2.2. Kaplan-Meier Estimator

The Kaplan-Meier survival curve was fitted. The plot of the survival curve along with the

confidence band is given in Figure 1 below.

Strata =+ Censoring

1.00 1

= =

on |

= o
I I

Survival probability
~
on

(0.001
0 20 40 60 80
Age

FIGURE 1. The Kaplan-Meier survival curve.
From the table and the graph, there is a 100% survival up to age 25, after which patients

start dying. Only about 60% of cohort survive past age 56, and around 20% are still alive at

about age 69. The survival curve exhibits roughly linear downward trend, with a slight curvature

downward and then upward. The change of curvature occurs around age 55.
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Kaplan Meier Survival Curve
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FIGURE 2. The Kaplan-Meier survival curves stratified by gender.

In the data set, there are 36 male and 276 female patients where the “ticks” shown in the
legend above represents censored observations. In Figure 2, we plotted the Kaplan-Meier
survival curves stratified by gender. The earliest death occurs at about age 34 for males and 31
for females. The 50% survival in males is around age 55 whereas in females it is around age 75.
Since the survival curve for female patients lies consistently above that for male patients,
females survive longer; however, judging by the appearance, there seems to be no significant
difference in survival curves. To verify there are insignificant differences in survival curves for
male vs. female, we carry out the log-rank test. From the log rank test output shown in Table 3A
of appendix B, the test statistic is y? = 1.2 with degrees of freedomn — 1 = 1 where n = 2 is
the number of curves being compared. The P-value is 0.3 and since it was greater than a =

0.05, we fail to reject the null hypothesis, concluding that there is no significant difference in

gender survival curves.
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Kaplan Meier Survival Curve
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FIGURE 3. The Kaplan-Meier survival curves for D-Penicillamine vs. Placebo Patients.

In Figure 3, we plotted the survival curves for patients taking D-Penicillamine (the
treatment group) versus those taking a placebo (the control group). From the appearance of the
curves, we can see that the curve D-Penicillamine group had a slightly longer survival time;
however, compared to the placebo group, both curves show insignificant differences in survival
length despite intersecting at several time points. To justify the claim of insignificant differences
in survival probability, the log rank test was carried out. From the log rank test results shown in
Table 3B of Appendix B, we achieve a test statistic is y2 = 0.1 with a corresponding P-value of
0.08. Therefore, we fail to reject the null hypothesis at the @« = 0.05 level of significance, and
conclude that there is no significant difference between survival curves for the D-Penicillamine

and the control group patients.
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2.2.3. The Nelson-Aalen Estimator
The Nelson-Aalen estimator is an alternative estimator to the survival function in case of
censored data. The overall survival curve depicted in Figure 4 below. The numerical results of

the Nelson-Aalen estimator are summarized in Table 2 of Appendix B.

Nelson-Aalen Estimator

Strata = Censored

Survival Probability

0 20 40 60 80
Age
FIGURE 4. The Nelson-Aalen survival curve.

From the table and the graph, there is a 100% survival up to age 30.9, after which patients
start dying. The results (see Appendix B, Table 2) shows that more than 50% of the cohort died
prior to reaching age 61. At the age of 67 is where 30% of the cohort are still alive but have a
high risk of dying within a few months. The curve exhibits slow but steady downward trend
which gets steeper as the patients’ age progresses. At the age range of 50-80 is where the graph

is the steepest, as many patients die of old age. Comparing the results Nelson-Aalen estimator
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with that of the Kaplan-Meier one, both estimators produced similar, but slightly deviating,

survival probability estimates for patients over time.

Nelson Aalen
Survival Curves
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FIGURE 5. The Nelson-Aalen survival curves stratified by gender.

Figure 5 shows the Nelson-Aalen survival curves stratified by gender. From the graph,
both curves for males and females exhibit a downward trend with several instances where the
survival curves intersected. Likewise, the overall size of the survival curve for males was slightly

larger than that of females, indicating that males had a higher survival length.
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FIGURE 6. The Nelson-Aalen estimated survival curves for D-Penicillamine vs. Placebo
patients.

The graph shown in Figure 6 depicts the Nelson-Aalen survival curves for patients given
D-Penicillamine vs. those who were given a placebo. From the graph, we see that the survival
curves exhibit a similar behavior, not deviating from each other by much. This is indicative of no

significant difference in patients’ hazard of dying between the two groups.
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2.2.4. Weibull Estimator of Survival Function

Weibull estimator of the survival distribution

1.0
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1
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FIGURE 7. Weibull estimator of survival function.

Figure 7 depicts the survival function for the Weibull distribution. From the graph, the
Weibull curve remains almost constant up until the age of 30. After age 30, the curve starts
decaying slowly, then rapidly near the end since many patients die of old age. Therefore, we can
conclude the Weibull parametric model is an appropriate fit for the data. The formula for the
survival curves, as well as the estimates for the parameters are shown in the next section.

2.2.5. Weibull Regression Model

From the output of the Weibull regression model (see Appendix B, Table 2), the
significant predictors at the « = 0.05 level of significance were: edema, age, serum bilirubin
concentration, albumin concentration, copper, AST concentration, prothrombin time, and

histologic stage of disease.
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From there, we fit a reduced Weibull model by re-running the model using only the

significant predictors, and obtain the output given in Table 3 in Appendix B. The scale parameter

of the distribution is estimated as & = 0.614 where the shape parameter is equal to @ =

S

1.63. The estimated parameter A can be written as:

1
= exp (———(11.095 — 0.562 - edema

A _(Bo + B1x1 + -t kak)
A = exp 5 0.614

o
—0.020 - age — 0.050 - bili + 0.461 - albumin — 0.002 - copper — 0.003 - ast — 0.176
- protime — 0.249 - stage) ).

The fitted survival function is

11.095 + -+ —0.249 - stage) t1'63>,t > 0.
0.614

S(t) = exp(—ita) = exp (— exp (—

To justify whether the Weibull model is a good fit for the data, we conduct the deviance test. The
test statistic is equal to

deviance = —2(InL(By,0) — In L(By, ..., Bk, 7))

= —2(—1188.753 — (—=967.3627)) = 442.7803.
The number of degrees of freedom is the same as the number of predictors in the fitted model,
that is, df = 8. Under the null hypothesis, the deviance follows a chi-squared distribution with 8
degree of freedom, where the P-value is computed as

P(x2(8) > 442.7803) « 0.05.

Since the P-value was significantly less than @ = 0.05, we accept the alternative hypothesis, and

thus conclude that the Weibull model fits the data well.
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Next, we give the interpretation of the significant estimated regression coefficients.

Recall that the interpretation is done in terms of the estimated hazard function with the estimated

regression coefficients f* = —

1.

=

Q™)

0.614 "

o)

For a one-unit increase in each stage of edema, there is a (exp(0.562/0.614) — 1) -
100% = 149.75% increase in the estimated hazard.

For a one-year increase in age, there is a (exp(0.020/0.614) — 1) - 100% = 3.31%
increase in the estimated hazard.

For a one-milligram increase in the bilirubin concentration per deciliter of blood, there is
a (exp(0.05/0.614) — 1) - 100% = 8.48% increase in the estimated hazard.

For a one-milligram increase in albumin concentration per deciliter of blood, there is a
(exp(—0.461/0.614) — 1) - 100% = —52.80% change in the estimated hazard, that is,
a52.80% decrease.

For each microgram increase in copper per day, there is a (exp(0.002/0.614) — 1) -
100% = 0.32% increase in the estimated hazard.

For each unit increase in AST concentration per milliliter, there is a (exp(0.003/
0.614) — 1) - 100% = 0.49% increase in the estimated hazard.

For each second increase of the Prothrombin time, there is a (exp(0.176/0.614) — 1) -
100% = 33.20% increase in the estimated hazard.

For each one-unit increase in the historic stage of the disease, there is a (exp(0.249/
0.614) — 1) - 100% = 50.01% increase in the estimated hazard.

Next, we use the fitted Weibull model to predict the probability of survival of a 56-year-

old patient with no edema present, with a bilirubin concentration of 1.1 mg/dl, albumin
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concentration of 4.4 mg/dl, copper concentration of 54 ug/day, AST concentration of 113.5
U/liter, a Prothrombin time of 10.4 seconds, and who is in the third stage. Therefore, we

calculate

1
20 = exp(— g7 (11.095 — 0.562(0) — 0.020(56) — 0.050(1.1) + 0.461(4.4)

—0.002(54) — 0.003(113.5) — 0.176(10.4) — 0.249(3))),
and the predicted survival probability of this patient at 1925 days:
$(1925) = exp(—(1°)(1925)1%3) = 0.8955692.
Thus, at 1925days, we can see that the survival probability of this patient is around 0.90.
2.2.6. Cox Proportional Hazards Model

Table 4 of Appendix B contains the output of fitting the Cox proportional hazards model.
At the « = 0.05 level of significance, the significant predictors were edema, age, serum bilirubin
concentration, albumin concentration, copper, AST concentration, prothrombin time, and
histologic stage of disease.

From there, we fitted a reduced model by re-running the model specifying only the
significant predictors and achieved a reduced Cox output which can be found in Table 5 of
Appendix B.

Before estimating the survival function of the Cox model, we must first estimate the

baseline function $,(t) through a step function S(t) equivalent to

S_v(t) — [S‘vo(t)]exp (Blf1+"'+ﬁkfk)

where Xy, ..., X} is our sample means of the significant predictors. The purpose of this step
function is to model the survival function of an “average” individual by which the values of all

predictors are equal to the sample means. Typically, the estimates of both the step function and
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the sample means of the predictors can be achieved using a specific R command (see Tables 6,
Appendix B).
From the baseline survival, we can now estimate the fitted Cox survival function S;(t) as
Sr(t) = [S(£)]e%P Brlea=++Bi(xi=%)) = [§(¢)]
where 7 = exp(0.832(edema — 0.111) + 0.033(age — 50) + 0.085(bili — 3.26)
—0.787(albumin — 3.52) + 0.003(copper — 97.6) + 0.005(ast — 123.0)
+ 0.268(protime—10.7) + 0.405(stage — 3.03)).
From the reduced Cox model, the fitted significant regression coefficients yield the
following interpretation.
1. For aone-unit increase in each stage of edema, there is a (exp(0.832) — 1) -
100% = 129.8% increase in the estimated hazard.
2. For a one-year increase in age, there is a (exp(0.033) — 1) - 100% = 3.36%
increase in the estimated hazard.
3. For a one-milligram increase in the bilirubin concentration, there is a
(exp(0.085) — 1) - 100% = 8.8% increase in the estimated hazard.
4. For a one-milligram increase in albumin concentration, there is a (exp(—0.788) —
1) - 100% = —54.53% change in the estimated hazard, that is a decrease of 54.53%.
5. For each microgram increase in copper, there is a (exp(0.003) — 1) - 100% =
0.30% increase in the estimated hazard.
6. For each unit increase in AST concentration, there is a (exp(0.005) — 1) - 100% =

0.501% increase in the estimated hazard.
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7. For each second increase of the Prothrombin time, there is a (exp(0.268) — 1) -
100% = 30.7% increase in the estimated hazard.
8. For each one-unit increase in the historic stage of the disease, there is a
(exp(0.405) — 1) - 100% = 50% increase in the estimated hazard.
Using the same information from the example involving the Weibull model (see Section
2.2.5), we will now use our fitted Cox proportional hazards model to predict the survival of a
patient at about time t = 1925 days. We compute
70 = exp{0.832(0 — 0.111) + 0.033(56 — 50) + 0.085(1.1 — 3.26) — 0.787(4.4 — 3.52)
+ 0.003(54 —97.6) + 0.005(113.5 — 123.0) + 0.268(10.4 — 10.7)
+0.405(3 — 3.03)} = exp(—1.041062) = 0.35308,
and
$(1925) = [S(1925)°]"° = [0.760]"" = [0.760](©-35308) = 0.9076.
Thus, at 1925 days, the predicted probability for this particular patient hovers at around 91%,

very close to our estimate achieved from the Weibull model.
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CHAPTER 3
LONGITUDINAL DATA ANALYSIS
3.1. Regressions for Longitudinal Data

Longitudinal data are defined as measurements collected on the same individuals at
several time points. In the medical field, most of the collected data are collected longitudinally
from medical records or during clinical trials. The specificity of longitudinal data is that
repeated measurements within each individual are expected to be correlated; therefore, a
regression model should reflect potential correlations within each individual and no correlation
between different individuals at any time points, same or not.

Below we present the theoretical framework for the random slope and intercept models
for the response variables with normal, gamma, binary logistic, and Poisson distributions.

3.1.1 Normally Distributed Response

To model this potential correlation within each individual, we can fit a mixed-effects
model (or longitudinal model, or random slope and intercept model). This model is defined as
Yij = Bo + B1x1ij + BaxXpij + -+ BrXkij + Pr+1t + uqg; + uyit; + & where the measurements
on the ith individual (subject), i = 1, ..., n, are collected at time points t;,j = 1, ..., p, and
X1, X2, -.., X), denote the predictors (which may vary with time). The term w, is the random
intercept and u, is the random slope. Both ui~N(O, oqfl.),i = 1,2, and the random error
e~N(0,0?). Itis also assumed that Cov(uy;, u;) = 0y, and Cov(uy;, up) = 0 for i # i’. The
slope and intercept are independent of the errors. The observed response y;; on the ith subject at

the jth time point is a normally distributed random variable with mean u = E(yl-j) = fo +

Bixiij + -+ + BiXiij + Br+at; @nd variance Var(vi;) = o, + 20y,,,t + 0Z,t7 + 2. The
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responses for different individuals at any time point (the same or not) are uncorrelated, that is,
Cov(yij,yij) = 0,i # i'. Observations for the same individual over time are correlated,
Cov(yijyijr) = 021 + 0,0, (8 + tjr) + 02, t;t;r, Where j = .

The fitted model is written as E(y) = B + B1x1 + -+ + Brxi + Brs1t, With the
estimated parameters 67, 6y,,8y,.,, and 62. The estimated regression coefficients yield the
following interpretation. If x;is numeric, then 3; represents the change in the estimated mean
response for one-unit increase in x;, provided all the other predictors are unchanged. Indeed,

EGla + 1) —E@lx) = Bo+ Pl + 1) + -+ By + Praat
—(/?0 + Prxy + o+ Brxy + ﬁk+1t) = ;.
If x, is a 0-1 predictor variable, then B is interpreted as a difference in the estimated mean
response for x; = 1 and x; = 0, provided the other predictors stay fixed. This is justified
because E(ylx; = 1) = E(ylx; = 0) = fo + By 1+ + By + Preyat = (Bo + P10+ - +
Brxy + ﬁk+1t) = 1.

From the fitted model, the predicted response y° for a set of predictors x?, ..., x2, t° is
equal to y° = By + Brx? + - + Brxp + Braat®.

3.1.2 Model Goodness-of-Fit Check

To test how well the fitted model fits the data, a goodness-of-fit deviance test is
employed. In this test the null hypothesis is that the null model fits the data better where the null
model contains only fixed-effect predictors and no random-effect ones. The alternative
hypothesis states that the fitted model (with mixed-effect terms) has a better fit. The test statistic
is called deviance and is calculated as

deviance = —2(In L(null model) — In L(fitted model)).
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Under H,, the test statistic follows a y2- distribution with the number of degrees of
freedom equal to the difference in the number of parameters used in both models. Namely, the
full model contains k + 2 fixed-effect regression coefficients plus 4 sigmas, whereas the null
model contains only the k + 2 betas plus one sigma. Therefore, the number of degrees of
freedom in this case is 3. The fitted model has a good fit if the P-value is smaller than 0.05, and
the alternative is accepted.

3.1.3 Generalized Estimating Equations Model

An alternative method to model longitudinal data is with Generalized Estimating
Equations (GEE) models. In GEE models there are no random-effect terms and no random error.
The distribution of the response variable is assumed known, the mean is modeled related to the
linear regression term with fixed-effects only, and the variance-covariance structure is pre-
specified. The theory is as follows.

Let xq;j, ..., xi;; denote the longitudinal observations of predictors for each individual
,i=1,..,nattimet;,j=1,..,p,and let y;; denote the response for the ith individual at the
jth time point. The mean and variance of y;; are equal to y;; = E(yl-j) = o + P1x1ij +
Baxzij + -+ + Brxyij + Brsatj and Var(y;;) = V(u;;) where V(.) is the variance function.
Next, the covariance structure of correlated responses for a given individual i,i = 1, ...n, is

modeled by a p X p matrix denoted by

V(1) 0 e 0
A; = 0 (gLZ) - e
0 0 Vi)

Observations between individuals are independent. Next, we let R; (o) represent the

working correlation matrix of the repeated responses for the ith subject where a represents a
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vector of unknown parameters, equal for all subjects within the study. Then, the covariance
matrix for the vector of responses y; = (i1, iz, -, yip)' is equal to

V() = AY? - Ri() - AT,

The regression coefficients 3, ..., Bx+1 and the vector of parameters « are estimated

numerically from the data by solving the generalized estimating equations:

n a” L
Z' (6 l) [Vi(a)]pip(yi - ﬂi)px1 = O(k+2)x1
=1 ﬂ (k+2)xp

where p; = (@1, ..., 1ip)' i the vector of mean responses, and @ is the method-of-moments
estimator of the vector of parameters.
Remark: Five commonly used structures for the working correlation matrix R;(a) for a
GEE are: Unstructured, Toeplitz, autoregressive, compound symmetric (exchangeable), and
independent.
e Unstructured matrix with all different off-diagonal entries with all off-diagonal entries,

having a total of p(p — 1)/2 unknown parameters

1 a2 QA3 " Aqp

a1 1 ays = ay

Ri(a) =| a;3 azz 1 - a3p
alp azp af3p 1

e Toeplitz matrix with identical entries on each descending diagonal, having a total of p —

1 unknown parameters

p—1

ay 1 a Ap_

Ri() =| a, a, 1 ap_3
Ap_1 Ap_y QAp_3 1
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e Autoregressive matrix with a!/*=/! in the ijth position, yielding a total of one unknown

parameter

1 a a? aP~1

a 1 a - aP7?

Ri(a) =| a? a 1 - aP3
ap_l ap_z ap_3 aes 1

e Compound symmetric or exchangeable matrix with all identical off-diagonal elements,

yielding a total of one unknown parameter

1 a a - «

a 1 a - «
R@=]la a 1 - «al.

\a a a - 1/

e Independent identity matrix with no unknown parameters

1.0 0 =~ 0
01 0 = 0
Ri(@w=|0 0 1 0
00 0 — 1

To determine which model is the best fit for the data, the quasi-likelihood under the

independence (QIC) model based on the function

¢= Zz 121 1J#.Uy;(u) du

Yij
is computed for each type of working correlation matrix of the repeated responses. The QIC is a
goodness-of-fit measure that is used to select the best-fitted working correlation structure. After
computing the QIC for all the types of the correlation matrix structures, the model with the
smallest QIC is used as the model of best fit. In the case where two or more models are tied with

having the lowest QIC (i.e., share the same Q value), then either of those models has the best fit.
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The fitted GEE model is written as E(y) = Bo + f1x1 + - + Xy + Brs1t, With the

estimated working correlation matrix R(@). Estimated regression coefficients are interpreted

similar to how it is done in the mixed-effects model (see Section 3.1.1).

3.1.4. Application of Normal Response

TABLE 2. Description of Variables in Blood Pressure Dataset

Name Description Type Values
BLOOD PRESSURE This is our predictor varl.able, the Numeric Yarles based on
- systolic blood pressure (in mm/hg). input
GENDER Male or Female Cgtegorlcal M or F
Binary
The daily activity level of patients. 1=Not active
: 6=Moderately
ACTIVITY Measured on a scale of 1-10 where Catego_rlcal
Numeric active
1= Not active and 10=Very active
10=Very active
1=Low Sodium
Level of dietary sodium consumed Categorical 9=Moderate
SODIUM by patient dail Numeric
yPp y Sodium
3=High Sodium
Binary 0= No family
Numeric
Family history of high blood history of high
HISTORY pressure blood pressure

1= Patient’s
family has a
history of high
blood pressure
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TABLE 2. Continued

Name Description Type Values
Patients with a Systolic mm/Hg of
less than 120 are classified as
having normal blood pressure.
Those with a systolic blood
pressure of 120-129 mm/Hg are
classified as having elevated blood _
1= Normal
pressure.
blood pressure
Those with a systolic blood ﬁ;géevf;;ure
pressure of 130-139 mm/Hg are _ P
- : 3=
classified as having stage 1 blood .
pressure (Hypertension) Categorical Hypertension
CATEGORY : Stage 1
Numeric 4=
Those with a systolic blood Hvpertension
pressure of greater than 140 yp
- . Stage 2
mm/Hg are classified as having -
stage 2 blood pressure - .
: Hypertensive
(Hypertension) .
crisis
Those with a systolic blood
pressure of greater than 180
mm/Hg are classified as having
hypertensive crisis. Therefore,
emergency treatment is required
At the end of each week, patients Numeric Ranges from 1
WEEK visited the clinic and had their week to 6
blood pressures recorded weeks

The Blood Pressure dataset (abbreviated as “bp”) is a simulated dataset consisting of

n = 45 patients of varying blood pressures. The purpose of this dataset was to test the
effectiveness of a new pill on lowering patients’ systolic blood pressure levels. The scenario for
this example is as follows. Prior to entering the clinical study, the researchers gave each patient a
questionnaire that asks about the patients’ physical activity level, sodium intake level, and

whether their families had a history of high blood pressure. The results from these questions can
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provide the researchers more clues about the effectiveness of the clinical trial. After that, the
patients’ systolic blood pressure was recorded once a week during the six-week study.

3.1.5. Application (Normal response)

Histogram of Normal Response

40

30

Frequency
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Syatolic Blood Pressure in mm/Hg
FIGURE 8. Histogram of normal response.

Figure 8 depicts the density histogram of the patients’ systolic blood pressure. From the
appearance of graph, the response is symmetric about the mean, indicating that the data nearing
the mean occurs more frequent than data far from the mean. Thus, the response follows a normal
distribution very nicely. To justify our claim that the response is symmetric about the mean, the
Shapiro-Wilk normality test shown (see Table 1A in Appendix D) is employed. From the results
of the test, we observed that because p = 0.1338 > «a atthe a = 0.05 level of significance, we
conclude that the response is indeed normally distributed.

Table 2A of Appendix D depicts the random slope and intercept output for the normal
response. From the output, it appears that the patients’ activity level, low sodium diet, patients

whose families had a history of high blood pressure, the patients’ blood pressure category, and
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the week the patients visited the clinic were deemed very significant predictors. Therefore, our
fitted random slope and intercept model can be written as
E(Blood Pressure) = 111 — 5.8Male — 1.4Activity — 20.4Sodium(Levell)

—3.6Sodium(Level2) — 8.5HistoryOfHighBloodPressure + 18.8Category — 9.9Time.

To determine whether a null model has a better fit against the fitted model, we employ
the deviance test. During the test, we specify the null model as a standard generalized linear
model, and the fitted model as a random slope and intercept model. The results obtained by the
deviance test (see Appendix D, Table 1B), indicate that since the P-value was exponentially
small, we accept the alternative hypothesis and therefore conclude that, compared to the null
model, the fitted model fits the data better.

Our interpretation of the significant predictors is as follows. The patients’ activity was
measured on a scale of 1-10, with 10 being very active and 1 being very sedentary. For each unit
increase in the activity scale, there was about a 1.42 mm/hg decrease in blood pressure, on
average. Secondly, a low sodium diet played a critical role in lowering blood pressure
concentration. Those who ate a low sodium diet decreased their estimated average blood pressure
by about 20.43 mm/hg. This result is consistent with our common belief that a low sodium is
indeed effective in lowering blood pressure levels. Furthermore, the estimated mean blood
pressure level for patients whose families had a history of high blood pressure was 8.53mm/hg
less than those whose families never had a history of high blood pressure. A plausible
explanation for this occurrence was due to the effectiveness of the therapy session. With respect
to each category in blood pressure, we observed the average blood pressure for each patient
increase by about 18.83 mm/hg for each increase in blood pressure stage. Lastly, there is an

estimated average of 9.92 mm/hg reduction in blood pressure every week.
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Finally, we put our fitted model to the test by calculating the average systolic blood
pressure by the end of week 4 of a female patient who is moderately active (i.e., Activity=6), eats
a low sodium diet (i.e., sodium level=1), has no family history of high blood pressure, and is
categorized as having Elevated Blood Pressure (i.e., Category=2). Using the fitted random slope
and intercept model, the predicted blood pressure for this patient is

Blood Pressure® =111 — 1.4(6) — 20.4(1) — 3.6(0) — 8.5(0) + 18.8(2) — 5.8(0) — 9.9(4)
= 80.2 m
hg

Next, we fit a generalized estimating equations (GEE) model for the normal response
using the unstructured, autoregressive, exchangeable, and independent working correlation
matrices. From the outputs shown in Tables 2B, 2C, 2D, and 2E in Appendix D, since the
exchangeable GEE model has the lowest QIC out of the four, we conclude that the model with
the exchangeable correlation matrix has the best fit. Therefore, we use this model for
interpretation and prediction.

Thus, the fitted generalized estimating equation model with the exchangeable working

correlation matrix is

E(Blood Pressure) = 120.18 — 6.38Male — 1.09Activity — 13.21Sodium(levell)
—2.54Sodium(level2) — 10.64HistoryOfHighBloodPressure + 14.61Category —
9.92Week, and

; ‘f g g 1 0369 0369 0.369
. e - X 0369 1 0369 0.369
R@=0369)=\a & 1 * 0369 0369 1 0369/

D 0369 0369 0369 1

a a a 1

At the a = 0.05 level of significance, patients whose families had a history of high

blood pressure, the patients’ blood pressure category, and the week the patients visited the clinic
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were deemed very significant predictors. Therefore, our interpretation of the significant
estimated regression coefficients is as follows. The estimated mean blood pressure level for
patients whose families had a history of high blood pressure was 10.64mm/hg less than those
whose families never had a history of high blood pressure. Further, we observed the average
blood pressure for each patient increase by about 14.61 mm/hg for each increase in blood
pressure stage. Lastly, there is an estimated average of 9.92 mm/hg reduction in blood pressure
every week.

Putting our fitted GEE model to the test, using the same example, our predicted blood
pressure for this patient by the end of the fourth week is

Blood Pressure® = 120.18 — 6.38(0) — 1.09(6) — 13.21(1) — 2.64(0)

—10.64(0) + 14.61(2) — 9.92(4) = 89.97 %.

Thus, from our prediction, we can conclude that from the clinical trial performed on this
specific patient, this person is predicted to have normal blood pressure by the end of the fourth
week.

3.2. Regressions for Gamma Response
3.2.1. Theoretical Framework

In a longitudinal setting, gamma regression is appropriate to use if the response variable

yij in a dataset follows a right-skewed distribution (i.e., has a long right tail). In that case, the

response is written as y;;~I'(a, B) with the probability density function equal to f(yl-j) =

a-1 ..
rg)ﬁa exp (— %) a, B,y > 0, where the expected value of y;; is u;; = E(y;;) = apB, with a

and S being the shape and scale parameters. To model the expected value of the response as it

relates to the linear combination of explanatory variables, a log-link function is used. For fixed
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values of the random intercept u,; and slope u,;, we can write In(u;;) = InE(y;;) = Bo +
Bix1ij + B2Xzij + -+ + BrXij + B+t + Uq; + Uy;t;. The random intercepts uy;’s are
independent N (0, o;7,) random variables, the random slopes u,;’s are independent N (0, o,)
random variables, and the covariance between u,; and uy; is gy, 4, -

It is customary to write the fitted model as E(y) = &f = exp(Bo + f1x1 + - + By +
[?k+1t) where all beta parameters along with the random effects parameters o; , 0,4, and o,
are estimated from the data through the maximum-likelihood method.

Consequently, the parameters f,, ..., Bx+1 and a are unknown and are then estimated by
the method of maximum likelihood. The estimates of the regression coefficients B, ..., Br+1
yield the following interpretation. From the model, if a predictor variable x; is numeric, then the
change in the estimated mean response for a unit increase in x;, provided all other predictors stay

unchanged, is equal to

E(ylx; + 1) — E(y|x1)
E(ylxy)

exp(Bo + B1(xy + 1) + -+ + Prxy + Prsat) — exp(Bo + Prxy + -+ Brxy + Prsat)
exp(Bo + Prx1 + - + Bixy + Prsat)

= exp(ﬁl) - 1.
Equivalently, (exp(,) — 1) - 100% represents the percentage change in estimated mean
response for a unit increase in x;.
If x, is a 0-1 predictor variable, then the percent ratio of the estimated mean response E (y) for
x; = 1 and x; = 0, provided the other predictors stay unchanged, is equal to

E(ylx, =1 exp(Bo + B1- 1+ -+ Brxi + Brsat
lx )_100%: p(Bo + B Bixi + Priat)

E(y|x, = 0) exp(Bo + P10+ -+ Brxy + Prsat)

-100% = exp(f;) - 100%.

44



From the fitted model, the predicted response y° for a set of predictors x?, ..., x2, t° is
equal to y° = exp (Bo + f1x) + -+ + Bix + Bri1t°).

Further, the GEE model for the gamma-distributed response estimates the mean response
through the function £ (y) = exp(Bo + B1x1 + -+ + Brxy + Prs1t), and the best fitted structure
of the working correlation matrix is the one with the smallest QIC value. Like in the fitted

random slope and intercept model, the beta parameters along with the parameters of the working

correlation matrix are estimated through the maximum-likelihood estimation. Interpretation of

estimated regression coefficients is done the same way as above.

3.2.2. Data Description Cancer (Gamma response)

TABLE 3. Description of variables in Cancer dataset

Name Description Type Values
This is our response variable, predicting : Varies based
Oral_cond o ! Numeric .
- the oral condition of patients on input
SEX Male or Female Binary MorF
Categorical
0=Tx (Aloe
Patients were randomly assigned to a .
. Juice)
Binary
TRT .
treatment and control group Categorical 1=Cx
(Placebo)
Age of patients Ranges from
AGE Numeric 26 to 86 years
old
Weight of patients (in Ibs) Numeric Ranges from
WEIGHT 120 Ibs to 300
Ibs
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TABLE 3. Continued

Name Description Type Values

This is the initial cancer stage of the
patients prior to entering the study.
There are four stages in cancer:

Stage 1= Typically a small cancer or
tumor that has not grown deeply within
the tissues;

Stage 2= Larger cancers or tumors have 1=Stage 1
grown more deeply into nearby tissue. 2= Stage 2
STAGE The cancer may have spread to the 3= Stage 3
lymph nodes, but not to other parts of 4= Stage 4
the body;

Multinomial
Categorical

Stage 3= The tumor may have grown to
a specific size and likely have spread to
adjacent lymph nodes, organs, or
tissues;

Stage 4= Serious cancer condition
where the cancer has spread from origin
to distant parts of the body.

WEEKS The Oral Condition of patients were Numeric Varies over
measured every two weeks during the time
6-week study. The Oral Condition is
measured on a scale of 1-25 where an
oral condition between the range of 15-
25 represents having excellent oral
health while an oral condition of 1
represents the worst possible oral
health.

The cancer dataset is a subset of data for a longitudinal study of the oral condition of
cancer patients at the Mid-Michigan Medical Center. The primary goal for this dataset was to
determine the effectiveness of the treatment (aloe juice) against a placebo in improving the oral

condition of patients. The Oral Condition is measured on a scale of 1-25 where an oral condition
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between the range of 15-25 represents having excellent oral health, the range of 10-15 represents
normal oral health, and anything below 10 represents bad oral health. The oral condition of
patients was measured every other week for a total of six weeks in this longitudinal study.
During the study, the researchers found out that the oral health distribution was more right
skewed, with the majority of patients falling within the 5-10 range, as opposed to the 20-25
range. Thus, a Gamma regression would appropriately model the response.

This sample dataset originally contained n = 25 patients with neck cancer, but extra
patients were simulated for illustrative purposes.

3.2.3. Application

Frequency

r/_"\
21 /]
[Ty
o &?@
I T T T 1
5 10 15 20 25
Response

FIGURE 9. Histogram for oral condition.

From the histogram, the distribution of oral condition has a right-skewed distribution. To
verify this claim, the Shapiro-Wilk normality test was run (see Appendix D, Table 3A). The P-
value of the test is less than 0.05, leading to conclusion that the response is not normally

distributed.
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Next, we fit a random slope and intercept model that models the response, the oral
condition of patients, and achieved an output which is shown in Table 4 of Appendix D. From
the output, at the a = 0.05 level of significance, we observed that the treatment (aloe juice)
along with the number of weeks were significant predictors in determining the oral condition of
the patients. The rest of the predictors were insignificant as they had P-values greater than a =
0.10. The fitted random slope and intercept gamma model can be written as:

E(Oral Condition) = exp (1.643 — 0.1231Male + 0.3223Tx — 0.0015Age
+0.0013Weight + 0.0455tage + 0.083Weeks).

To check goodness-of-fit of the mode, we ran the deviance test. In this test, we specify
our null model as a standard generalized linear model and our fitted model as that of a random
slope and intercept model. From the deviance test results (see Appendix D, Table 3B), since the
P-value was exponentially small, we concluded that the fitted model for the gamma response was
better compared to the null.

Thus, our interpretation of the significant predictors is as follows. First, the estimated
mean oral condition for patients in the treatment group is exp(0.3223) - 100% = 138.03% of
that for the patients in the control group. Next, for every week in the study, the estimated average
oral condition of patients increases by exp(0.083) - 100% = 108.68%.

Using the fitted random slope and intercept model, our goal now is to predict the
expected initial (week=0) oral condition of a 68-year-old female patient weighing 168 Ibs., who
is randomly assigned to the treatment group, and who is in the first cancer stage. The predicted
value is:

Oral Condition® = exp(1.643 — 0.1231(0) + 0.3223(1) — 0.001568

+0.0013(168) + 0.045(1) + 0.083(0)) = exp(2.22713) = 9.27.
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Next, we fit a generalized estimating equations (GEE) model shown in Section 3.1.2 for
the gamma response using the autoregressive, unstructured, exchangeable, and independent
working correlation matrices. From the outputs shown in tables 4B, 4C, 4D, and 4E of Appendix
D, since the unstructured GEE model had the lowest QIC out of the four, we conclude that the
model with the unstructured working correlation matrix was the best-fitted model. It is written
as
E(Oral Condition) = exp(1.516 — 0.126Male + 0.664Tx — 0.0013Age + 0.00068Weighin

+0.02Stage + 0.069Weeks), and

1 @, Q3 T1p

a2 23 a2p
Rl(a) = | &13 ar3 1 &3p |

A1p OApp A3p 1 /

1 1.0973 0.3948 -0.0734
1.0973 1 0.5157 0.2773
0.3948 0.5157 1 0.5379

—-0.0734 0.2773 0.5379 1

The interpretation of the significant estimated regression coefficients is as follows. First,
we observed that estimated cancer for males was exp(—0.126) - 100% = 88.2% of that for
females. Second, the estimated average oral condition for patients in the treatment group was
exp(0.664) - 100% = 194% of that in the control group. Lastly, for every two weeks, the
estimated average oral condition of patients changes by about exp(0.069) - 100% = 107.14%.

For our fitted GEE model with the unstructured working correlation matrix, using the
same example, our predicted oral condition is

Oral Condition® = exp(1.516 — 0.126(0) + 0.664(1) — 0.0013(68) + 0.00068(168)

+0.021 + 0.069(0)) = exp(2.23) = 9.30.
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From the results of the predictions, we observe that at Weeks = 0 this patient is expected
to have an oral condition of 9.27 from the fitted random slope and intercept model and 9.30 from
the fitted GEE model. The results obtained through both fitted models were very close.

3.3. Regressions for Binary Response
3.3.1. Theoretical Framework
Binary logistic regression with random slope and intercept is used to model longitudinal

data where the response variable assumes values 0 or 1. For subject i,i = 1, ...,n, attimet;,j =
1,..,p, letm;; = P(y;; = 1). Note that ;; is also the mean of y;;. Indeed, E(y;;) = 1-m;; +
0- (1 —m; j) = m;;. The random slope and intercept model for a binary response can be written
as:

exp(ﬁo + B1x1ij + -+ BiXkij + Braty +uq + uzitj)
1+ exp(Bo + Brxaij + -+ BiXij + Brarty + Uyi + uzit;)

mi; = E(yi) =

An alternative form of the model is:

ﬂij(u)
1-— T[ij(u)

= exp{Bo + Brxwij + - + BiXuij + Brarty + Uy + it}
Here u,;'s~N (0, o;7,) are the random intercepts and uy;'s ~N (0, o3, ) are the random slopes for
i=1,..,n,j=1,..,p. The covariance between u,; and u,; is o, ,,,. The parameters of this

model By, ..., Br+1, 04, 04, 1S 0y, and o} are estimated numerically by maximum likelihood

estimation. The fitted mean response in this model can be written as:

A( ): eXp(ﬁo+B1x1+"'+ﬁkxk+f3k+1t)
1+exp(Bo+P1x1++PBrxk+Pr+1t)’

or equivalently,

N

— = exp{By + Bx1 + -+ Byxi + Byt

D
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The ratio —— represents the estimated odds in favor of y = 1. The estimated regression

1-7
coefficients yield the following interpretation in terms of the estimated odds. If x; is numeric,
(exp(B1) — 1) - 100% represents the estimated percent change in the odds for a one-unit

increase in x4, given that all the other predictors remain fixed. This can be seen by writing

ﬁ|x1+1 _ ﬁlxl
1_7T|X1+’il 1_7T|x1 .100%
7T|x1
1 - ﬁ-lxl

_exp(Bo+ fr1(a + D) + - + B + Breaat) — exp(Bo + frxs + -+ + iy + Preaat)
exp(Bo + Brx1 + -+ BiXy + Pr+1t)

= (exp(,@l) — 1) +100% .

-100%

If x; is a 0-1 variable, then exp(,@l) - 100% can be interpreted as the estimated ratio of odds for
x; = 1 and that for x; = 0, under the condition that the other predictors are held constant. We

demonstrate this by writing

17, - exp(Bo + P11+ -+ Brxy + Brast 5
M= fhamt) gy, = P o Pickic * Plers )-100%=exp(ﬁ1)'100%-
1 - T[|x1=0

From the fitted model, for values of predictor variables x?, ..., x, and t°, the predicted

probability m is:

L0 — _&XP (Bo + B1x? + -+ + Biex + Bresrt®)
1+ exp (Bo + Prx) + -+ Biexp + Prs1tO)

Furthermore, the generalized estimating equations model for the binary response in

exp (Bo+B1x1+ - +Bx+Br+1t) nd

longitudinal setting has the mean response E(y) = Trerp Gotharet o thin.d)
0 1X1T " TPRXARTPE+1

unstructured, autoregressive, exchangeable, or independent working correlation matrix.

51



3.3.2. Data Description Anthrax (Binary response)

TABLE 4. Description of variables in Anthrax dataset

if they have symptoms of
anthrax.

0=No presence of anthrax
1=Presence of anthrax

Name Description Type Values
The binary response variable, Either O or
remission from anthrax measuring whether the person has Binary 1
- - any symptoms of Anthrax. 0=No
1=Yes
The age of patients recorded in Ranges
the study. . from 21
Categorical
age Binary years old to
80 years
old
Patients were randomly assigned 0=Tx
to either a treatment group (TX)
or a control group (Cx). The : (Antitoxin)
- . Binary
medicine treatment group received Numeric
medicine (Antitoxin) while the 1=Cx
control group received an (Placebo)
unknown placebo drug.
Gender of patients . Male(M) or
gender Numeric
Female(F)
The risk (i.e. chance) of Binary Ranges
risk contacting anthrax. Abbreviated | Numeric from 120
on a scale of 1(very low risk) to 5 Ibs to 300
(very high risk) Ibs
Patient had possible contact with
someone or something that Binary Either Y or
contacted .
showed symptoms of anthrax categorical | N
prior to entering the clinical trial.
Months Patients were recorded once Numeric Either O or
every month for 12 months to see 1

The Anthrax dataset is a simulated longitudinal dataset with the purpose of determining

whether Antitoxin (Tx) is effective against anthrax, a skin infection caused by bacteria

commonly found in soil. The simulated dataset contains n = 100 patients of various ages. Prior
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to entering the study, the patients were asked if they had contact with either a human or an
animal that showed possible signs of Anthrax. If so, then this information could provide
researchers evidence about the effectiveness of Antitoxin. Next, patients were randomly assigned
to either a treatment (Tx) group or control (Cx) group. The treatment group received Antitoxin
while the control group patients received a placebo. In follow up survey, the researchers
contacted each patient once a month for any symptoms of Anthrax. The results were recorded
each month for a total of 12 months.
3.3.3. Application
In this data set, the response variable measured was presence or absence of anthrax

symptoms. The histogram of the response variable is given below (see Figure 10).

Histogram of binary response
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FIGURE 10. Histogram of Binary Response.
Next, we fitted a random slope and intercept binary logistic model. The output can be
found in Table 6A in Appendix D. From the output, at the @« = 0.05 level of significance, the

Antitoxin, prior exposure to Anthrax, and month of inspection were all deemed significant
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predictors. Out of all the significant predictors, we noticed the Antitoxin was by far the most
significant one, yielding a very minuscule P-Value of p = 5.00 - 10715, Consequently, we can
therefore conclude that Antitoxin was indeed very effective against anthrax. Following our

analysis, we can write the fitted model as:

A~

i exp(1.875 — 0.000334ge — 1.661Tx + 0.028Male — 0.056Risk — 0.310

- NoPriorContact — 0.210Month).

Next, we conduct the deviance test with the null model being the ordinary binary logistic
model. The P-value for this test is very small (see Table 5 in Appendix D), leading to conclusion
that the longitudinal model has a better fit.

The interpretation of the significant regression coefficients is as follows. The estimated
odds in favor of anthrax for patients in the treatment group is exp(—1.661) - 100% = 19% of
that for patients in the control group (meaning that the treatment is effective). In addition, the
estimated odds of having anthrax for patients who had no prior contact with this disease before
entering the clinical trial are exp(—0.310) - 100% = 73.34% of those for patients who were
exposed to the disease in the past. Lastly, the estimated odds in favor of anthrax change by
(exp(—0.211) — 1)) - 100% = —19.03% every month, that is, decrease every month by
19.03%.

Finally, we would like to predict the probability of a certain patient showing remission
from anthrax by month 6. Suppose this patient is a 29-year-old male farmer who is at high risk of
contracting the disease. His family, who are also farmers, has had a history of contracting

anthrax (i.e., showed previous exposure to this disease). Suppose also, the patient was randomly
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assigned to the treatment group. The predicted probability of remission from anthrax for this

patient is

20 _ exp (r%)
1+ exp (r9)

where 70 = 1.875 — 0.00033(29) — 1.661(1) + 0.028(1) — 0.056(5) — 0.310(1) —

0.210(6) = —1.61757. Thus,

o €xp(—1.61757)

= = 0.16554.
1+ exp (—1.61757)

7t

Next, we fit a generalized estimating equations model for the binary logistic response
using the autoregressive, exchangeable, and independent working correlation matrices. The
unstructured model was not able to converge, so that was omitted from consideration. Tables 6A,
6B, and 6C in Appendix D present the outputs of the GEE models for this response. Since all
three GEE models shared the same QIC of 1441, we conclude that all three of the models can be
a good fit for this data set. Therefore, we will arbitrarily choose the independent working
correlation matrix GEE model as our fitted model.

From the output, the fitted GEE model is written as

~

17 exp(1.403 + 0.00077Age — 1.23Tx + 0.028Male — 0.041Risk — 0.383

* NoPriorContact — 0.163Month).

The working correlation matrix is the identity matrix

1 0 O 0
0 1 0 0
Ri=10 0 1 0
0O 0 0 - 1
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The interpretation of the significant regression coefficients is as follows. The estimated
odds in favor of remission from anthrax for patients in the treatment group are exp(—1.23) -
100% = 29.23% of those for patients in the control group, meaning that the treatment is
efficient. Secondly, the estimated odds for those who had no prior contact with this disease
before entering the clinical trial are exp(—0.383) - 100% = 68.18% of those patients who were
exposed to the disease in the past. Lastly, the estimated odds of anthrax change by
(exp(—0.163) — 1) - 100% = —15.05% each month, that is, decrease every month by 15.05%.

Using the fitted GEE model with the independent working correlation matrix, we predict
the probability of remission from anthrax for the patients described previously in this section.
The predicted value is 7° = 1.403 + 0.00077(29) — 1.23(1) + 0.028(1) — 0.041(5) — 0.383 -
(1) — 0.163(6) = —1.34267, and

0
50 _ exp (") __exp (—1.34267)
1+exp(r? 1+exp(—1.34267)

= 0.207071.

3.4. Regressions for Poisson Response
3.4.1. Theoretical Framework

In a random slope and intercept Poisson regression model the response variable y follows

AYe~2

a Poisson distribution with the probability mass function P(y) = ”

,y=0,1,2,... Forthe
ith individual at time ¢;, predictors xy;;, ..., xx;; and fixed values uy; and u,; of the random
intercept and slope, respectively, the parameter A;; is written as A;; = exp(ﬁo + B1xqj + 0+
BiXkij + Br+1ty + uq; + uZitj). The random intercepts u,;’s are independent N (0, o;7,) random
variables, the random slopes u,;’s are independent N (0, o;7,) random variables, and the

covariance between uy; and uy; IS gy, 4, -
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The fitted model has the estimated rate 1 = E(y) = exp (8o + B1x1 + -+ + Bnxx +
Br+1t). The parameters of the model are By, ..., By+1, 02, 02, and o, ,,,, Which are estimated by
the maximum-likelihood method.

From the fitted model, the estimates of the regression coefficients yield the following
interpretation. For a numeric predictor x;, the estimated change in rate when x; increases by one

unit, while all the other predictors are held fixed, is equal to:

_ eXP(ﬁo + P10y + 1) + Boxy + o+ Brxy + Bk+1t) - eXP(ﬁo + Brxy + Baxg + - + Brxy + ﬁk+1t)
exp(ﬁo + B1x1 + Baxy + -+ Brxy + ﬁk+1t)

=exp(f,) — 1.

Thus, (exp(f;) — 1) - 100% is also equivalently interpreted as the estimated percent
change in rate when x; increases by one unit, given all the other predictors are fixed.
If the predictor x, is a 0-1predictor, then the ratio of the estimated rates when x; = 1 and when
x; = 0 is equal to:

Al,=1 _ exp(Bo + Br - 1+ Boxz + -+ + Biexie + Praat) = exp(p1)
Pl - A~ A~ ~ = = 1)-
Al x1=0 exp(ﬁo + P10 4+ Brxy + ﬁk+1t)

Hence, exp{,[?l} - 100% is equivalently interpreted as the percent ratio of estimated rates when
x; = 1 and x; = 0, given that the other predictors remain constant.
From the fitted model, for a given set of predictors x?, ..., x2, t°, the predicted response is found
as y© = exp (Bo + B1x? + -+ + Bixi + Bies1t?).

Further, the generalized estimating equations approach models the response variable as a

Poisson random variable with mean E(y) = exp (Bo + B1x1 + - + LrXx + Br+1t) and an
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unstructured, autoregressive, exchangeable, or independent working correlation matrix. As
before, the best-fitted model has the smallest value of the QIC criterion.
3.4.2. Data Description Cigarettes (Poisson Response)

TABLE 5. Description of Variables in Cigarette Dataset

Name Description Type Values
N_CIGARETTES | This is our response variable, number | Numeric Varies based on
of cigarettes smoked.
input
SEX Sex of patient Binary M or F
Categorical
TRT Patients were randomly assigned to Binary Tx or Cx
either a treatment group (Tx) or a
control group (Cx). The treatment Categorical
group received medicine (Chantix)
while the control group received an
unknown placebo drug.
AGE Age of patients Numeric Ranges from age
21 to age 80
Weight Weight of patients (in Ibs) Numeric Ranges from 101
pounds to 297
pounds
Intention Did the patient intend to quit smoking | Binary Either O or 1
prior to entering this clinical trial? Categorical
e 0=No
e 1=Yes
Addiction.Status | A numeric scale from 1 to 5 that Numeric Ranges from 1to 5
measures the level of patient cigarette
addiction
e 1= Minimal level of
addiction
e 5= Maximum level of
addiction. Medicine is
mandatory.
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TABLE 5. Continued

Name Description Type Values

Month At the end of each month, patients Numeric Number of
were asked how many cigarettes they cigarettes smoked
smoked while additionally taking the varies by month

drug assigned with their group. The
data were recorded every month for 6
months to see if the number of
cigarettes smoked per month changed
with the drug.

The Cigarette dataset is a simulated dataset similar in structure to the Cancer dataset
shown in Section 3.1.3. It is a longitudinal dataset where the dependent variable models count
data, the number of cigarettes smoked per month. The purpose of this dataset was to determine
the effectiveness of Chantix, a prescription medicine drug developed to help people stop
smoking, against an unknown placebo drug. The dataset contains n = 100 simulated patients of
varying levels of cigarette addiction, ranging from a scale 1 to 5 where 1 represents no addiction
and 5 represents an extreme addiction to cigarettes. In this scenario, a patient with an addiction
score of 4 or 5 would highly benefit from either seeing a doctor or receiving Chantix, as opposed
to a patient with a score of 1. Prior to entering the study, the researchers asked the patients if they
had any intention to stop smoking, or not. Patients with the desire to quit smoking would likely
benefit from the study compared to those without any desire to stop smoking. Next, the patients
were randomly assigned into either a treatment or a control group, with the treatment group
receiving Chantix, and the control group receiving a placebo drug. Furthermore, the patients
were asked to take one pill of the drug assigned by their group daily and monitor the number of

cigarettes smoked. Following the patients’ cigarette use, the researchers asked each patient the
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total amount of cigarettes they smoked at the end of each month. The number of cigarettes each
patient smoked was recorded at the end of each month for a total of six months during the study.
3.4.3. Application
In this data set, the response variable, the number of cigarettes smoked every month,
follows a Poisson distribution. To verify that claim, we plotted the histogram of the response

variable.

Histogram of Poisson Response
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FIGURE 11. Histogram of Poisson response.

Figure 11 depicts the histogram for the number of cigarettes smoked per month. We can
see that the distribution resembles the Poisson probability mass function, and so we fit the
Poisson random slope and intercept model. The output can be found in Appendix D, Table 8A.
At the a = 0.05 level of significance, we observed that the treatment group, level of addiction
for patients, and the months were all deemed very significant predictors. All other predictors

were very insignificant as they had very large P-values.
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Thus, from the output, we can write the fitted model where the response models the number of
cigarettes smoked every month as
1 =E(y) = exp(0.970 + 0.058Male + 0.247Tx — 0.00091Age — 0.00029Weight
+ 0.090Intention + 0.508AddictionStatus — 0.230Month).

Next, we employ the deviance test to compare the model fit of the null model against the
fitted random slope and intercept model. From the output shown in Table 7 of Appendix D, since
the P-value was less than 0.05, we reject the null model and conclude that the fitted model fits
the data better.

Next, we interpret the significant estimated regression coefficients. From the fitted
model, observe that those within the treatment group showed a exp(0.247) - 100% = 128%
decrease in cigarette consumption, more than double compared to those of the control group.
Also, For each level increase in cigarette addiction, the estimated average total amount of
cigarettes each patient smoked increases by (exp(0.508) — 1) - 100% = 66.20%. Lastly, each
month, the estimated average total amount of cigarettes each patient smoked changes by
(exp(—0.23) — 1) - 100% = —20.55%, that is, every month, the estimated average number of
cigarettes smoked by each patient decreases by about 20.55%.

Next, our goal now is to predict the number of cigarettes smoked by a 47-year-old female
weighing 150 Ibs. This person has developed a serious nicotine addiction ever since she started
smoking cigarettes at the age of 21 and is desperate to quit. Therefore, the researchers
categorized her nicotine addiction as “5”, very high levels of addiction.

From our given data, we will now predict the number of cigarettes this person smoked over the

course of the study.
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A% = exp(0.970 + 0.058Male® + 0.247Tx° — 0.000914ge° — 0.00029Weight°
+ 0.090Intention® + 0.508AddictionStatus® — 0.230Month?®)
Atmonth 3: 1° = exp(0.970 + 0.058(0) + 0.247(1) — 0.00091(21) — 0.00029(150) +
0.090(1) 4 0.508(5) — 0.230(3)) = 22.0738 cigarettes.
At month 6: 21° = exp(0.998 —0.066(0) — 0.001(150) — 0.058(1) + 0.00039(150) +
0.533(5) — 0.189(6) — 0.06(0)) = 11.0717 cigarettes.

Next, we fit a generalized estimating equations model shown in Section 3.1.2. for the
Poisson response using the autoregressive, exchangeable, independent, and unstructured working
correlation matrices (refer to Appendix D, Tables 8B, 8C, 8D, and 8E for outputs). Since the
output for the autoregressive had the smallest QIC value of —25573.84, we will choose the
autoregressive model as our fitted GEE model for both our interpretation and prediction.

Thus, from the output table (see Appendix D, Table 8B) the fitted model has the
estimated rate
A= E(y) = exp(1.351 + 0.108Male — 0.42Tx — 0.0014ge — 0.00022Weight

— 0.026Intention + 0.486AddictionStatus — 0.121Month),

and the estimated working correlation matrix for p = 6 months is equal to

1 a @ ar-1
~ a 1 a - ar?
R;(@=0.635) =| @2 Q 1 GP-3

ar~t @p~? @pr3 1

1 0.635 (0.635)%2 - (0.635)°

0.635 1 0.635 - (0.635)*

=1 (0.635)2  0.635 1 o (0.635)3
(0.635)° (0.635)* (0.635)3 - 1
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We will now give our interpretation of the significant predictors. The estimated average
number of cigarettes smoked by the patients within the treatment group is exp(—0.419) -
100% = 65.77% of those for the control group. Also, as the level of addiction increases, the
estimated average number of cigarettes each patient smoked increases by (exp(0.486) — 1) -
100% = 62.58%. Finally, each month, the estimated average number of cigarettes each patient
smoked changes by (exp(—0.121) — 1) - 100% = —11.40%. That is, every month, the
estimated average number of cigarettes smoked by each patient decreases by about 11.40%.

Using the same example, under the autoregressive GEE model, we will now predict the
number of cigarettes this patient will smoke at months 3 and 6. We have

1% = exp(1.351 + 0.108Male® — 0.42Tx° — 0.0014ge® — 0.00022Weight®

— 0.026Intention® + 0.486AddictionStatus® — 0.121Month®).
At month 3: 1% = exp(1.351 + 0.108-0 — 0.42 -1 — 0.001 - 21 — 0.00022 - 150 — 0.026 -
1+ 0.486-5—0.121-3) = 18.5042 cigarettes.
At month 6: 1° = exp(1.351 + 0.108 -0 — 0.42 -1 — 0.001 - 21 — 0.00022 - 150 — 0.026 -
1+ 0.486-5—0.121-6) = 12.8713 cigarettes.

To conclude, from month 3 to month 6, the patient is predicted to show a steady decrease
in monthly cigarette consumption. Therefore, we conclude that Chantix would indeed be helpful

in lowering the monthly cigarette use for this patient.
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CHAPTER 4
DATA MONITORING
4.1 Background Information
4.1.1 Determining the Length of a Clinical Trial

In a clinical trial, the sample size is the total number of subjects enrolled in the trial. A
larger sample size is necessary to deliver a more detailed and accurate information about the
efficacy of the tested product. The minimum required sample size should be determined prior to
commencement of a clinical trial. The steps that have to be followed in calculation of the
minimum required sample size are shown below.

Step 1: the endpoint, known as the measure of the target outcome, of a clinical trial is
defined. There are three types of endpoints. The first endpoint is called a pre-specified
percentage change from the baseline value of a medical measurement. The second endpoint is a
pre-specified actual change from the baseline value in some medical characteristic. The last
endpoint is a pre-specified rate of a certain adverse event. This is defined as the ratio between the
total number of events and the total trial time for all subjects.

Step 2: To model the endpoint, a certain family of distributions is used, where its
parameters are estimated from the data.

Step 3: The null and alternative hypotheses for the endpoint are identified. The type of
hypothesis test (two-tailed, left-tailed, or right-tailed) used depends on the nature of the
experiment.

Step 4: The probability of a type | error, known as the significance level of the test, is
determined. The probability of type I error is the probability of accepting the alterative

hypothesis H;, given the null hypothesis H,, is true.
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Step 5: The probability of a type Il error along with the minimum detectable difference, if
appropriate, is determined. The probability of a type Il error is the probability of failing to reject
H, when a specific alternative hypothesis is true. For instance, H;: u; — u. = & is true, where §
is the minimum detectable difference between the mean responses in the two groups.

Within the clinical trial setting, a power function of a test (i.e., 1 — ) is frequently used
to determine the probability of rejecting the null hypothesis, given that the alternative is valid.

We will now present a numeric example illustrating the power analysis to determine the

required sample size when two means are compared. To determine the required sample size for
the test of Hy: u; = u. against Hy: u; > u. , we assume that ft~N(yt,%2) and fC~N(uC,%2).
We also assume that o is known (from previous studies, says), and that the probabilities of type |
and type Il errors, respectively a and g, are pre-determined. The value of S is given for a
specific alternative Hy: u, — u. = 6 where ¢ is fixed. Therefore, under the null hypothesis

M

ZC ~N(0,1) , and we can write the acceptance region for the null hypothesis as

o |=
n

7 =

{Z <k} = Bde o p b = {ft —x. < ka\/%} for some critical value k. On the other hand, if a

2
specific alternative Hy: u; — u. = 6 holds, then x; — x.~N (6, 2%)

Further, the values of k and n can be found from the equations for the probabilities of type I and
type Il errors. The equations are:
. 1—a=P(Z<k|lz~N(0,1)) = (k)

and
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X, — X.~N (62%2)) P

.. _ _ 2
ii. ﬁ-P(xt—xC<ka\/% J\/Z
where @ is defined as the cumulative distribution function of a standard normal distribution.

From the first equation, the critical value of the acceptance region k = ®~1(1 — «). Substituting

it into the second equation yields

PP =k ——— = (1) - ——.

ﬁ 2
g n o n
Solving for n we obtain the required sample size (per group),
o2 2
— _ -1 _ b1
n—2(6) (@11 - a)-2~1(B))".
In practice, n should be taken as the smallest integer exceeding this calculated value, that is,
o\2 2
— _ -1 _ —_Hh-1
n=[2(3) @7a-wo-o@)),
which results in the probability of a Type Il error being slightly smaller than the specified value.

To give a numeric example, suppose ¢ = 17.4,a = 0.05, f = 0.25,and § = 8.

Plugging the values into the above expression yields the required sample size per group,

2
n= [2 (%) (o711 - 0.05)—CI>‘1(0.25))2] = [50.89541] = 51. That s, 51 patients should

be enrolled in each group in the clinical trial to achieve the power of the test of at least 1 — f =

0.75. The actual probability of type Il error in this case will be
8
B'=d| &71(0.95) - ———— | = 0.249244,

’ 2
17.4 t1

and thus, the actual power of the test willbe 1 — = 0.750756.
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4.1.2 Interim Data Monitoring

Interim data monitoring in clinical trials is a type of data analysis performed while the
trial is still in progress to determine if the trial should continue or not. A clinical trial might be
terminated earlier if there is enough evidence to justify the claim that a tested product is either
superior, or worse than its standard counterpart. The decision on either to conduct a full-length
trial of the product’s efficacy or stop early is determined by the amount of confidence the
researchers have in the tested product. If the researchers have high confidence in the product’s
ability to succeed, interim data monitoring is an appropriate solution because there is a high
chance of early termination of the trial. Below, we present two major statistical methods for
calculating interim sample sizes.

4.1.3 Classical Group Sequential Testing

Classical group sequential testing is used in a randomized trial involving two groups
(treatment and control). The procedure is as follows.

Once data for n subjects in each group become available, an interim analysis is
conducted on the 2n subjects. From there, the two groups are compared statistically. If the null
hypothesis H, is rejected in favor of the alternative H;, then the trial is terminated, and the
conclusion is achieved. On the other hand, if the null H,, is kept, then the trial continues until data
for another set of 2n subjects become available. Then a statistical test on 4n subjects is
conducted. Similarly, if the alternative hypothesis H, is accepted, then the trial is terminated.
Otherwise, the trial repeats continuously with periodic evaluations until N sets of 2n subjects
become available and will terminate once the null hypothesis is rejected, favoring the alternative.

For each of the N interim statistical tests, we denote the probability of type | error by «a'.

The number of interim tests N must be determined a priori. Therefore a’ and n can be found if
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the overall probabilities of type I and type Il errors, a and 3, respectively, are specified. They
solve the equations:

i. P(atleast one interim test rejects H, | H, is true) = a
ii. P(atleast one interim test accepts H, |H; istrue) =1 — .

We will now present an example illustrating sequential testing. Recall from the power analysis
example discussed previously, our null and alternative hypotheses of interest are specified as

Hy:pe = pe vs. Hy: ue — pe. = 6 Where our stated parameters are « = 0.05, § = 0.25, § = 8,

and ¢ = 17.4 (see Section 4.1.1). For this test to be conducted, an estimated sample size of n’
51 patients per group is required.

Now, suppose we consider a group sequential case with N = 2, meaning that we test at
most two times, first time on 2n subjects (n subjects per group), the second time, if needed, we

test on 4n subjects (2n subjects per group). To show how this testing works, we introduce

ft(i) and fgi) as the respective group sample means in the ith set of 2n subjects, i = 1, 2. Now,

denote by

(1), @) (1), (@)
X +x — X +x
=+t and x, = ~<~—<

Xy = <~ the group sample means in the combined set of 4n subjects.
2 2

We perform the first statistical test of H, against H, at significance level a’ on the initial set of

i o =1 _ -1 202\ o
2n subjects where, under the null hypothesis, ;™ — x;”~N (0, T) with the probability of the

fgl)—fgl)

acceptance regionequalto 1 —a’' = P < k | = ®(k). Thus, if we know the critical

202

value k, we can compute a' = 1 — ®(k).
If the trial is not stopped at the first testing, it continues until 4n subjects are accrued. The

difference in sample means for the set of 4n subjects can be calculated as
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00 00 g0 @ o
S e R

D _ 7@ —(2) —(2)

Since xtT~N (O ZZ) and =

~N (O - ) we deduce that x; — x.~N (0 ) We want

the acceptance region for the second test also have the critical value k (and thus, the significance

level a"). From the definitions of a and S8, we can specify two equations for k and n as

/(1) ey . \
X+ — X
1—gq=p|X "X X7 )

202 o2
n

n

where £ — zV~N (0 - ) and %, — X.~N (O 2), and

/ (W) _ ) o \
X Xt — X
e "X g BT Xe g

where £ — x V<N (6 - ) and %, — X.~N (6 2).

n

The former equation above can be simplified to

1—a=P(Z, <k Z +7Z, <kV2)
_(1) _(1) ~(2)_-(2)
\/— and Zz %

follow a standard normal distribution. The latter equation becomes

where Z; = specify the random variables, which are independent and

B=P|Z; + <k, Zy+7Z,+ < kV2
20 202
n n
£V _£D_s F@_z@_ _ _
where Z5 = Z—C and Z, = tz—cz are independent standard normal random variables.
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These equations have to be solved numerically for specific values of a and . Going back to our
example (see Section 4.1.1), we specify o = 17.4,a = 0.05, § = 0.25,and § = 8. Writing

these equations as double integrals, we obtain

k2-z 1, _@tizh
0.95 _f f 2 dzydz _f d(2)P(kV2 - 2)dz ,

and

6\/_ svn
e (TOF 1 (e e
0.25 —] f o€ 2 dz,dz; —f ¢(2)P

where ¢ and @ denote the pdf and cdf of a standard normal distribution, respectively.

6\/_ ) i

Solved numerically (see Appendix E), k = 1.88 which correspondstoa’ =1 —
®(1.88) = 0.03005404, and n = 28.66759 or, rounding up, n = 29 subjects.

In conclusion, the interim group size is 29 patients, meaning that instead of accruing 51
patients in each group and testing the null and alternative hypotheses at the @ = 0.05 level of
significance, the group sequential method with N = 2 dictates that investigators test the
hypotheses with n = 29 subjects per group at the a’ = 0.03 level of significance. If the first test
is inconclusive, a second test using the same level of significance a’ with a group size of 2n =
58 subjects is imposed.

An advantage of using sequential testing is that there is a good chance of stopping the
trial earlier. If researchers have strong confidence that a certain product could succeed, they
would likely choose the sequential testing method as there is a good chance of stopping the trial
after data have been collected and analyzed for n = 29 subjects, rather than waiting until 51
subjects are accrued for nonsequential testing. However, a disadvantage of using sequential

testing is that if a product does worse than expected, the trial must continue until 2n = 58

70



subjects are accrued for each group. Consequently, resulting in a trial longer than that of the
nonsequential monitoring (51 subjects).

The example we presented illustrates sequential testing for N = 2. A larger number of
tests may be used. Then the quantities k and n can be found as numeric solutions of two

equations:

1—a=P(ﬂ{Zl+---+Zm<k\/E}>

and

/ v ) \
mé
B=P ﬂ Zy+ -+ Iy + —=< kVym
\m:l 2;‘2 /
\J n
where Z,, ..., Zy denote independent N (0,1) random variables.
4.2 Bayesian Sequential Procedure
4.2.1 Bayes Theorem
Define a partition of a sample space S as the union of mutually exclusive events. Assume
that for some positive integer k, the events By, B,, ..., By, satisfy two conditions:
i S = B; UB, U...U By, (their union is all of the sample space), and
ii. B;N B; = @ for i # j (they are mutually exclusive).
Consider an event A, and suppose we know the probabilities P(B;),i = 1, ..., k, of each of the
event in the partition, and each conditional probability P(A| B;),i = 1, ..., k, of A occurring,
given each of the event in the partition. Suppose the event A has occurred. Then, the probabilities

of B; for each fixed j,j = 1, ..., k, can be updated according to the Bayes’ formula:
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P(ANB)) _ P(A|B)P(B;)
P(4) I, P(AIBOP(B)

P(B;|A) =

4.2.2 Prior and Posterior Distributions

Bayesian statistics is the system for describing uncertainty of a future event using the
mathematical language of probability. Under the scenario of uncertainty, Bayesians would start
with their existing beliefs, known as priors, and update their priors using data analysis to give
posterior beliefs. These posterior beliefs can then be used for decisions.

In the setting of Bayesian statistics, to estimate the parameters of interest, one would need
to have some prior knowledge of the experiment. This knowledge is modeled as a distribution
incorporating a Bayesian’s subjective beliefs about the unknown parameter 6 prior to examining
the data. After gathering the data, the prior distribution is updated using Bayes’ theorem to
obtain the posterior distribution which is basically a probability distribution that represents the
updated beliefs about the estimated parameters after observing the data. The posterior density
function is derived as follows.

Assume the data are represented by a random vector X = (X3, ..., X,,) from a probability
distribution that depends on an unknown parameter 6 € Q that needs to be estimated. Knowing
that 6 is a fixed parameter, Bayesians model it as a random variable © that follows a certain prior
probability distribution over the set Q. We write the prior pdf of © as 7 (6), 6 € Q.

Next, we assume that the variables X;, ..., X,, are independent, and have identical pdf f(x|6),

given © = 6. The likelihood function of X4, ..., X,,, given © = 6, can be written as

LG, 35 4010) = G 10) - f2l0) £l = [ | pexile

In this notation, the conditional pdf of © given data x4, ..., x,, is equal to

72



L(x1, X2, e, xn|60) - (0) _ 1 f(x;16) - m(6)
fQL(xl,xz, ey X0 |0) - (0)dO fﬂ [T~ f(x;10) - (0)do

fo (O | x4, e, xn) =

This is called the posterior distribution of © since it represents our knowledge about the
parameter O after observing the data. Note that the posterior distribution is proportional to the
product of the likelihood function and the prior distribution:

fo (O] x1, .o, x) X L(x41, X2, ..., X,160) - (6O).
The proportionality is defined as equality up to a multiplicative normalizing constant
(Jo L1, %z, ey %, 16) - n(e)dé))_l, not depending on .

Within a clinical trial setting, a Bayesian sequential procedure is used to model the
clinical endpoint as a random variable ® where the prior density of @, ©(8) = fg(8), can be
chosen in multiple ways. If there is strong belief that a tested product would succeed, an
enthusiastic prior is chosen. An enthusiastic prior assumes that an alternative hypothesis (i.e.,
Hy: 0 € Q,) is more likely to hold than the null hypothesis (i.e., Hy: © € Q,) where Q, and Q,
partition Q. Alternatively, if researchers are skeptical about the tested product and assume that
P(H,) < P(H,), then a skeptical prior can be used to model a prior distribution.

To use the Bayesian inference, we first compute the posterior density of © given the data

are observed. From the Bayes’ theorem, the posterior density is equal to

f(datal|® = )1 ()

fo(8ldata) = [ f(datal® = O)m(6)d6

Finally, to arrive at the decision of either rejecting or accepting (failing to reject) the null

hypothesis, the posterior probability of the null hypothesis is calculated as

P(Hyldata) = | feo(6|data)ds,
Qo

and the decision is made according to the following rule:
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i. If P(H,|data) < 0.05, the trial is stopped and the product is not marketed.
ii. If P(H,|data) > 0.95, the trial is stopped and the product is marketed.
iii. 1f 0.05 < P(H,|data) < 0.95, the trial continues.

4.2.3 Comparing Conjugate vs. Nonconjugate Priors
Note that in the expression for the posterior density, calculating the denominator is a
computationally-intensive task. To avoid it, it is often convenient to use conjugate priors, priors

chosen in such a way that the posterior density would have the same algebraic form as the prior.

It is a very cost-efficient approach since in this case there is no need to calculate the integral (the

normalizing constant). Conjugate priors come from a class of priors that are conjugate to the

class of likelihood functions. That is, being conjugate is a class property. Below we will consider

some concrete examples of conjugate priors.

Alternatively, nonconjugate priors can be considered. In some situations, for instance,
researchers don’t possess any prior knowledge about the parameter, so using a uniform prior
would be advisable. In effect, using a nonconjugate prior would mean letting the likelihood
function of the observed data play a major role in forming the posterior distribution. If for
example, a new medication was tested in animals only, and there is no prior knowledge if in
humans it performs better or worse, then the correct approach would be to rely on a prior
distribution that may appropriately shape the posterior distribution.

Below, we present examples using Poisson, normal, and binomial distributions for the
data in clinical settings, and compare the use of conjugate and nonconjugate priors for the

parameters.
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4.3 Poisson Inference
4.3.1. Poisson-Gamma Example

A clinical trial is conducted to test the performance of a new heart valve where the
endpoint of the trial is the rate of certain valve-related complication. The rate of a complication
is defined as the total number of cases divided by the total amount of years accumulated by all
patients in the trial. This is known as “patient-years”. For example, if there were 9 cases in 500
patient years, then the rate of complication would be 0.018 or 1.8%. From this example, the
complication rate R for the new heart valve was compared to its historic value of R, = 0.012.
The primary endpoint is an endpoint that is used in power analysis to pre-determine the required
sample size of a trial. From all possible valve-related complications, endocarditis (inflammation
of heart lining) is chosen as the primary endpoint because it is the rarest and takes the longest
time to be detected.

Next, we perform a hypothesis test to determine if the new valve performed better or
worse than the historical one. We specify the null hypothesis, indicating that the new valve
performed worse than the historic one, as Hy: R = 2R;,, = 0.024 against the alternative
hypothesis H;: R < 2R, = 0.024. If the null hypothesis is not rejected, then we arrive at the
conclusion that the new valve performed worse than the historic one and should not be used.

An assumption is made that the number of endocarditis events (specified as N) during
time T follows a Poisson distribution with mean A = RT and probability mass function

(RT)ne—RT

P(N =n) = =

,n=20,12...

Now we model R as a random variable, and choose a prior distribution from the class of

distributions that is conjugate to the class of Poisson distributions. To this end, we view the
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above probability mass function as a function of R and note that it has the algebraic form of a
gamma distribution. It means that gamma priors are conjugate to Poisson likelihood functions.

We specify the prior distribution of R as I'(a, B) with density

)

[(a)p«

w(r) = , ra,B>0.

It is not difficult to deduce that the posterior distribution of R given that n endocarditis

evens have been observed during time t is again a gamma distribution with parameters n +

-1
a and (t + %) . We show the derivation below.

n,-rt 1% lexp(—= T _ 1.1
fR(T|Tl, t) o« f(t,n|T)7T(T) — (rt)n:? . F(a)ﬁ(a B) < rn+a—1e rt B = 7,.(7’1+C¥)—1e r/(t+3) ,

which is the algebraic form of the gamma distribution with the said parameters.

Next, the posterior probability that the alternative hypothesis H, is correct is computed as

0.024

P(H,|data) = P(R < 0.024|n,t) = f fr(rin, t)dr
0

l n+a »
= %LO-O rta-l.exp (—r (t + %)) dr.

The decision to accept or reject the alternative hypothesis is based on the following
criterion. If P(H,|data) < 0.05, the alternative hypothesis is rejected. On the other hand, if
P(H,|data) > 0.95, the alternative hypothesis is accepted. Otherwise, the trial continues.

To specify the parameters a, 8, we note that the gamma density is unimodal and right-
skewed, meaning there is one peak and a long right tail. For these distributions, the mean,
median, mode inequality holds in the form mode < median < mean. This implies that

P(R < mode) < P(R < median) < P(R < mean), or since P(R < median) = 0.5 by
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definition, we obtain P(R < mode) < 0.5 < P(R < mean). From our example mentioned
previously, if investigators wanted to use enthusiastic prior, they would set the mean of the prior
distribution equal to 0.024. From the mean, this gives them the opportunity to specify any
desired prior probability of the true H; larger than 0.5. Thus, the probability of the accepting the
true alternative hypothesis can be written as 0.5 < P(R < mean) = P(R < 0.024) = P(H,).
On the contrary, if the researchers wanted to impose a skeptical prior, they would set the mode of
the prior distribution equal to 0.024, resulting in P(H;) = P(R < 0.024) = P(R < mode) <
0.5, and so P(H,) can take on any value below 0.5.

The gamma distribution with parameters a, f has a mean equal to a8 and mode equal to

(a — 1)pB. From the information, the parameters a and 8 are computed numerically from the

equations:
af = 0.024 (Enthusiastic prior),
(a —1)B = 0.024 (Skeptical prior),
and
r@lexp () o
P(H,) = P(R < 0.024) = foo'oz“n(r)dr = foo'oz‘*TBaBdr = value specified by the

researchers.

To give a numeric example, suppose the researchers used a skeptical prior, where the
probability of the true alternative is specified as P(H;) = 0.3, then the parameters a and S of the
prior density satisfy the equations

(a —1)B = 0.024, and

dr.

0.0247% lexp (—1)
_ B
03= | — e
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After the parameters are evaluated, we will be looking for n such that the posterior probability of

the alternative

0.024
P(H,|data) = P(R < 0.024|n,t) = f fr(rin, t)dr
0

1 n+a
_ (t " F)a) ‘]‘OIOM rte-l.exp (—r (t + l)) dr
0

I'(n+ B
is either less than 0.05 or greater than 0.95. The results of the Bayesian stopping rules are shown
in Section 4.2.3.
4.3.2. Poisson Inverse-Gamma Example
Now, let us assume a nonconjugate prior distribution chosen from a family of
distributions similar to Poisson. In this case, that would be the inverse-gamma distribution where
the prior distribution of R is specified respectively as I'"(a, ) with density 7(r) =

%r‘“‘l exp (— g) r,a, f > 0. From the prior distribution, the posterior distribution of R

given that n endocarditis evens have been observed within t patient-years yields a density

function that is derived as follows.

_ B
lg7Tt7,

n,-rt BEr *lexp _E
falrin, t) ocf(t,n|r)n(r):(”)n!e L = ( T)ocr”‘“‘

Since this posterior density is not of a recognizable algebraic form, we need to compute

the normalizing constant. That is, we need to calculate the entire expression

pn-a-1 e—(rt+ﬁ/r)

fooo yn—a-1p=t+B/r) dr

fr(rin,t) =

Next, the posterior probability that the alternative hypothesis H, is correct is computed as
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0.024
P(H,|data) = P(R < 0.024|n,t) = f fr(rin, t)dr
0

foo.oz4 pn—a—1 o=(t+B/r) gy

- fooo rn—a—-1o—(t+B/T) dr

B

—— and mode
a—-1

The inverse-gamma distribution with parameters «, § has a mean equal to

equal to % From this information, the parameters a and g are estimated from the equations

shown below as

L = 0.024 (Enthusiastic prior),

a—1
p = 0.024 (Skeptical prior),
a+1
and
P(H,) = P(R < 0.024) = f00'024n(r)dr = ff’ou%;r‘“‘l exp (— é) dr where P(H,) is

specified by the researchers.

To give a numeric example, suppose the researchers used a skeptical prior, where the
probability of the true alternative is specified as P(H;) = 0.3, then the parameters a and g of the
prior density satisfy the equations.

L = 0.024 and

a+1

0.3 = fOO-OZ‘* F'Lz::) r~* lexp (— g) dr.

After « and B are calculated, we will be looking for n such that the posterior probability of the

alternative  P(H, |data) = P(R < 0.024In,t) = [,""** fe(rIn, t)dr
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")
0024 q_q ~(rt+
J, Trhele ) dr

fooo rn-a-1 e_(ng)dr

is either less than 0.05 or greater than 0.95. The results are shown in Section 4.4.3.
4.3.3. Poisson Conjugate vs. Nonconjugate Stopping Results

According to FDA, the minimum length of the trial without the Bayesian monitoring is
800 patient-years (Grunkemeier, G.L., Johnson, D.M., & Naftel, D.C. 1994). To illustrate how
the Bayesian approach works in this case, we suppose that the investigators decide to conduct
interim Bayesian analyses at t = 400, 500, and 600 patient-years. For each value of t, we
compute the required sample size n, for which the posterior probability of the true alternative is
below 0.5 or above 0.95. These are the stopping values for the analyses. In the tables below, we
present numerical values for the conjugate case (gamma prior) and nonconjugate case (inverse-
gamma prior).

TABLE 6. Results of Bayesian Monitoring in Poisson-Gamma Example

t n P(H{In,t) |t n P(Hq|n,t)
400 3 0.97713 400 14 0.07695

4 0.94766 15 0.04573

5 0.89733 16 0.02592
500 5 0.97127 500 16 0.11349

6 0.94193 17 0.07319

7 0.89535 18 0.04529
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TABLE 6. Continued

t n P(H{In,t) |t n P(H,|n,t)
600 7 0.96708 600 19 0.10411

8 0.93866 20 0.06882

9 0.89562 21 0.04388

From the results of Table 6, at 400 patient-years, if n < 3, the trial is stopped, and the

heart valve is marketed; furthermore, if n > 15, the trial is stopped, and valve is not marketed.

On the other hand, if 4 < n < 14, the trial continues until 500 patient-years are accrued. At 500

patient-years, if n < 5, the trial is stopped, and the heart valve is marketed; additionally, if n >

18, the trial is stopped, and the valve is not marketed. Nonetheless, if 6 < n < 17, the trial

continues until 600 patient-years are accrued. At 600 patient-years, if n < 7, the trial ends and

the valve is marketed; moreover, if n > 21, the trial concludes, and the valve fails to be

marketed. Otherwise, if 8 < n < 20, the trial continues until 800 patient-years, when it is

eventually stopped and the maximum-likelihood test is carried out.

TABLE 7. Results of Bayesian Monitoring in Poisson-Inverse Gamma Example

t n P(Hyn,t) |t n P(H;|n, t)
400 1 0.96892 400 15 0.06413

2 0.94761 16 0.03959

3 0.91598 17 0.02339
500 2 0.98170 500 18 0.06132

3 0.96853 19 0.03908
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4 0.94831 20 0.02398

600 5 0.96837 600 21 0.05795
6 0.94920 22 0.03783
7 0.92178 23 0.02389

From the results of Table 7, at 400 patient-years, if n < 1, the trial is stopped, and valve
is not marketed. On the other hand, if n > 16, the trial is stopped and the valve is marketed;
however, if 2 < n < 15, the trial continues until 500 patient-years are accrued. At 500 patient-
years, if n < 3, the trial is stopped, and the heart valve is not marketed. Additionally, if n > 19,
the trial is stopped and the valve is marketed; on the contrary, if 4 < n < 18, the trial continues
until 600 patient years are accrued. Lastly, at 600 patient-years, if n < 5, the trial ends and the
valve is marketed; moreover, if n > 22, the trial concludes, and the valve fails to be marketed.
Otherwise, if 6 < n < 21, the trial continues until 800 patient-years, when it is eventually
stopped and requires the maximum likelihood test to be carried out.

Comparing the stopping rules of the conjugate vs. nonconjugate priors, we observe that it
is harder to stop the trial for superiority as well as inferiority of the tested valve for the
nonconjugate prior as fewer adverse events are required to market the value and more adverse
events are required to stop the trial and not market the valve.

4.4 Normal Inference
4.4.1. Normal-Normal Example

We illustrate the application of a normal prior density when the data are normally

distributed. Suppose a clinical trial is conducted to determine if a new drug was efficient in

lowering blood pressure for patients suffering from hypertension. To do so, the researchers first
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specify the endpoint of the trial as the percentage reduction in diastolic blood pressure. The new
drug is given to the treatment group, while the control group receives a placebo. The true mean
percentage of the reduction in blood pressure is specified as u; and y., in the treatment and
control groups, respectively. The researchers test Hy: u; < u. against Hy: pu; > .. If the
alternative is accepted, it would indicate that the true mean percentage of the reduction in blood
pressure is greater in the treatment group and thus the new drug is effective.

Let X,~N(ue, 02) and X.~N(u., o2) be the random variables representing respectively
blood pressure reduction in the treatment and control group patients. The variance o2 is assumed
known (from previous studies). Suppose there are n patients in each group. The distribution of
the difference in sample means is X, — X.~N(u; — u., 26 /n). Next, we specify a conjugate

normal prior for the difference in means as u, — u.~N(8,, 6¢) where the pdf is equal to 7 (8) =

_ 2

20y

(Zna()z)_l/zexp( —

From this information, the posterior is derived as follows

fﬂt—ﬂc((g | n, ft'fc) x f(nr ft' fc I 6)”(6)

—(x, — x. — 2 — — 2
= (2m)"Y2(20% /n)~1/? exp{ (xt40_2x/cn %) }-(27w§)"1/2 exp {((ST;O)}

TL52 - Zn(ft - fc)5 62 - 2505}

“ f—
exp { 402 20¢

1 20?% 4 no? n(x, — x.)ol + 28,02
=exp __.—O. 52_2. (t C)O > 0 '6
202 + no;

which has the algebraic form of a normal distribution with mean

n(ft_fC)Gg+26°UZ=<5O-i2+(jt_gzc)-i>/<1 n)

—_ + _—
202 + no¢ 0¢ 20%2)" \6¢ 202

and variance
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20% + not _1_ 1 L" !
2020¢ ~\o2  202)

It remains to determine reasonable values of §, and &, the parameters of the prior
distribution. These can be elicited by asking investigators explicitly what they think the most
likely value of u;, — u. is. The investigators should also specify P(H,). From here, g, is derived

as the solution of the equation

——(x _ 60)2} dx.

P(H,) = P(ue — pic > 0) = j (2mag) /> eXp{ 5
0 20}

Making the substitution z = (x — 6,)/a,, we obtain

[0e]

2

P(H,) = f (21)~1/2 exp <— %) dz=1—- (— @>.

=8¢/00
From here,

% = ®-1(1—P(Hy))’

Once g, P(H,), and &, are elicited, we compute g,, and then fix group size n and search
for values of x; — x, that make the posterior probability of H; either above 0.95 or below 0.05.
The expression for the posterior probability is

P(Hllnlft - fc) = P(‘th—,uc > Oln'ft_ fc)

n(x, — x.)of + 285,02 1 n\ "
—p Z>_(t c)O 0 /<_2+_>

202 + nag ¢ 202

WUCEEAIY

202 0’3
=1—-0

1, n

o'g 202
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Next, we present a numeric example. Suppose from similar studies done in the past, the
standard deviation is estimated as o = 17.4. Suppose that researchers have confidence in the
tested product and use an optimistic prior with P(H;) = 0.8, and approximate the most likely

value of u; — u. by 8, = 8. Using this information, we calculate

—8
T eRTYS)

Suppose the researchers decided to conduct an interim Bayesian analysis when n = 30
patients per group are accrued. The trial is stopped if the posterior probability of H; is either less
than 0.05 or larger than 0.95. The stopping rules are summarized in Table 8 in Section 4.4.3.

4.4.2. Normal-Cauchy Example

For the same scenario, assume that the prior distribution does not follow a conjugate
normal distribution but instead follows a nonconjugate Cauchy distribution. Thus we have that
the distribution of the difference in sample means is X, — X.~N(u; — uc, 202 /n) and assume
that the prior distribution of u, — p, is Cauchy(8,, 52) with the probability density function

n(6) = ,—0 < § < oo, The posterior density is proportional to

f/,tt—/,tc(6 | n, ft'fc) X f(Tl, ft' fc | 6)”(6)

— (27'[)_1/2(20'2/7’1)_1/2 exp {_(ft - f(; - 6)2} . 1

402 /n - 2
/ 0, [1 +(25%) ]

_ _ 2
exp Gl (:;2_ %))

n

8 — 8,\°
1+< 0o )
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-1

_ _ 2
[ s
The normalizing constant ffooo ( 5_;‘0)2 dé has to be computed numerically.
1+

The parameter 6§, is specified as an a priori most likely value of u; — u.. In addition, the
prior probability of accepting the alternative hypothesis P (H;) can also be elicited. From here, o,

is computed as the solution of the equation

o

1
P(Hy) = P(ue — pc > 0) = 57 do .
0 d — &
moy |1 + %

5-5,

OJo

Making the substitution z =

, We obtain

*® 1

4
som(1+22) ¥
o)

0

_1 tan(z) |7~ _1(n " 60>
_narcanz |z=—g—g_7'[ > arctan ( 00) .

pei) = |

Hence,
_6‘0

tan (% - P(Hl)) '

0'0:

The posterior probability of H; can be found numerically according to the formula

—(6 - F - %))’

exp

Iy 1 ds

P(Hllnlft - fc) = P(‘th—,uc > Olnift_ fc) =

I n ds

In our numerical example with P(H;) = 0.8 and §, = 8, we compute
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The trial is stopped if the posterior probability of H, is either less than 0.05 or larger than 0.95.

-8

O0g =
2

tan (E— m-0.8

= 5.812.

The stopping rules for ¢ = 17.4 and n = 30 are summarized in Table 8 in Section 4.4.3.

4.4.3. Normal Conjugate vs. Nonconjugate Stopping Results

For the numerical example with the conjugate prior, the stopping rules are given in Table 8

below.

TABLE 8. Results of Bayesian Monitoring in Normal-Normal Example

n Xy — X P(Hi|n, x; — X;) n X — X¢ P(Hq{|n, x; — x.)
30 |-10.0 0.04918 30 6.2 0.94600

-9.9 0.05127 6.3 0.94817

-9.8 0.05342 6.4 0.95028

size n has reached 30 in each group, if x; — x. < —10, then the trial is stopped, and the drug is
not marketed due to its inability to reduce blood pressure. On the other hand, if X, — x. > 6.4,

then the trial is stopped, and the drug is marketed. Otherwise, if —10 < x; — X, < 6.4, then the
trial continues until the required sample size of 51 patients per group are accrued, at which point

the trial is stopped and the standard z-test is carried out. The estimate of the required sample size

The interpretation of the Bayesian monitoring procedure is as follows: when the sample

of 51 patients per group for a non-Bayesian monitoring is computed via power analysis (see

Section 4.1.3). The stopping rules for the Cauchy prior are given in Table 9.
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TABLE 9. Results of Bayesian Monitoring in Normal-Cauchy Example

n Xp — X¢ P(Hqi|n, x; — X;) n X — X¢ P(Hy|n, x; — X.)
30 |-10.2 0.04872 30 5.0 0.94974

-10.1 0.05114 5.1 0.95169

-10.0 0.05365 5.2 0.95357

The interpretation of the Bayesian monitoring procedure is as follows: when the sample
size n has reached 30 in each group, if X, — x, < —10.2, then the trial is stopped, and the drug
is not marketed; however, if x; — x. = 5.1, then the trial is stopped, and the drug is marketed.
Otherwise, if —10.1 < X, — X, < 5.0, the continues until the required sample size of 51 patients
per group are accrued, at which point the trial is stopped and the standard z test is carried out.

Comparing the results of the conjugate vs. nonconjugate priors, we conclude that it is
harder to stop the trial earlier and not market the drug with nonconjugate prior (since the
threshold is lower (-10.2 as opposed to -10.0 with the conjugate prior). However, it is easier to
stop the trial and market the drug with nonconjugate prior since the acceptance value of 5.1 is
lower than 6.4, which is required with the conjugate prior.

4.5 Binomial Inference
4.5.1 Binomial-Beta Example

A clinical trial is conducted in which N patients with heart arrhythmia are implanted
defibrillators. The researchers involved with this study are interested in testing whether the
chance of false positive alarms by the defibrillators within the first year of use is low. To do so,

we specify X~Bin(N,p) where X is the number of false positives and p is the probability of a

false positive. The null and alternative hypotheses of interest are specified as
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Ho:p = Po VS. Hl:p < Do -
Since X has a binomial distribution, we can specify a Beta(a, 8) prior on p, which is
conjugate to the binomial distribution. The posterior distribution of p after observing the number

of false alarms X = x is derived as follows.
fpo(@ | x) x Px(x,p) - m(p)

p* (1 -p)f

x+a—1 (1 _ )N—x+ﬂ—1_
B(a, B) P P

(Z) p*A—-p)"

Thus, the posterior distribution is Beta(x + a,N — x + f3).
The values of a and 8 may be determined from two equations, for the prior probability of

H,, and the most likely value of p (i.e., the mode of the prior distribution). The equations are:

Po ,a—1 _ f-1
p* " (1-p)
P(H,) = P(p < =f dp,
(Hy) = P(p < po) ) B@p) p
and
Mode = a—1
Oe_a+ﬁ—2

where Mode < p,, to ensure a unique solution for the estimates of a and .

To present a numeric example, suppose there are N = 110 patients and the probability of
a false alarm H;:p < 0.25 is being tested. Suppose the researchers use a skeptical prior with the
probability of the true alternative equal to P(H;) = 0.40, and the elicited value of the mode is
0.23. Solving numerically the two equations above, we get that the estimated values for « and

are 1.96 and 4.22, respectively. The posterior probability of the alternative is

o (1 — )i

PULI) =P <pob) = | B
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The trial is stopped if this probability is less than 0.05 or in excess of 0.95. The stopping
rules are shown in Table 10 Section 4.5.3.
4.5.2 Binomial-Truncated Normal
Using the same information from the previous example, suppose the researchers choose

to specify a nonconjugate truncated normal prior on p with the probability density function
- (p — w)?
(2mo?) 1/Zexp( — pZaz )

— 2 ’
fol(Znaz)‘l/ZeXP( —%) dp

n(p) = 0<p<1.

The posterior distribution of p after observing the number of false alarms x is

p (1 —p)"™* - exp ( - %)

Jy @ —pNx exp( —(’02%,502) dp

folp1x) =

where the mean p and standard deviation o can be arbitrarily chosen.

The posterior probability of the alternative has the expression

P @ =p)V eXp( - —(pz_aély) dp

fol px(l _ p)N—x . exp< _%) dp -

P(H|x) = P(p <po Ix) =

The trial is stopped if this probability is smaller than 0.05 or larger than 0.95. The stopping rules
are shown in the next section in Table 11.

4.5.3. Binomial Conjugate vs. Nonconjugate Stopping Results
In the numerical example with the beta conjugate prior, the stopping rules are as given in Table

10 below.

90



TABLE 10. Results of Bayesian Monitoring in Binomial-Beta Example

X P(Hq|x) X P(Hy|x)
19 0.967199 35 0.052273
20 0.946275 36 0.038359

If x < 19, the trial is stopped, indicating that the number of false positives is low, and
thus the defibrillators can be sold to the public. On the contrary, if x > 35, the trial is stopped
due to a high number of false positives, and thus the defibrillators are not marketed. Otherwise, if
20 < x < 35, the trial continues.

For the nonconjugate truncated normal prior, the stopping rule is summarized in Table 11 that
follows.

TABLE 11. Results of Bayesian Monitoring in Binomial-Truncated Normal Example

X P(H,|x) X P(H,|x)
19 0.953627 34 0.054265
20 0.92602 35 0.035085

Remark: The calculations in table assumes the researchers arbitrary specify u = % and

o= ifor the posterior distribution

We then give our interpretation of the results shown in Table 6. If x < 19, the trial is
stopped, indicating that the number of false positives is low, and thus the defibrillators can be

sold to the public. On the contrary, if x > 35, the trial is stopped due to a high number of false
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positives, and thus the defibrillators are not marketed. Likewise, if 20 < x < 34, the trial
continues.

Comparing the results of the conjugate to that of the nonconjugate model, we observe
equal lower bound of 19 false positives to stop the trial and market defibrillators. However, use
of nonconjugate prior allows stopping the trial earlier and not marketing defibrillators if 35 false
positive incidences are observed as opposed to 36 with conjugate prior, making it easier to stop
the trial with nonconjugate prior. A possible explanation for this phenomenon is observe that
with the posterior of the nonconjugate model, because we restricted the parameter p to the
interval [0,1] where u and o are arbitrary constants, the nonconjugate model yielded a posterior
that behaved somewnhat like a beta distribution. This is the case with the Binomial-Beta example
shown above, as this example resulted in a beta posterior distribution. Therefore, we can
conclude that both models performed almost equally well, but the null H, was easier to accept

for the nonconjugate model.
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CHAPTER 5
CONCLUSION

This thesis provided a broad overview of statistical techniques applicable to medical data,
in survival analysis, longitudinal regression data analysis, and Bayesian monitoring of clinical
trials. In Chapter 2, we modeled survival data using a variety of techniques (such as Kaplan-
Meier survival curve, Cox proportional hazards model, Weibull regression, etc.).

In Chapter 3, we modeled longitudinal data using random slope and intercept models for
longitudinal responses with normal, gamma, binary, and Poisson distributions on simulated
datasets. Next, to test how well each model fits the data, we employed a goodness-of-fit deviance
test and found out that all of our fitted models were definitely suitable for our data. We used the
fitted models for interpretation of estimated significant regression coefficients and for prediction
of response for a fixed values of predictor variables. From there, we alternatively fitted
generalized estimating equations (GEE) models for each of our datasets, choosing the optimal
one according to the QIC criterion. We also interpreted the estimated significant regression
coefficients and used the fitted GEE models for prediction.

The focus in Chapter 4 was on providing an overview of interim data monitoring in
clinical trials using the classical sequential testing approach and the Bayesian sequential
procedure. The Bayesian procedure was illustrated with three clinical trial settings involving
end-point variables with Poisson, normal, and binomial distributions. Conjugate as well as
nonconjugate prior distributions of the parameters were analyzed and results compared. We saw
through the numerical examples, that the use of conjugate priors achieves computationally easier
and faster results, and moreover, the stopping rules are less strenuous than when nonconjugate

priors are utilized.
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Further work can be done on the examples mentioned throughout the thesis. Most notably
in survival analysis, we can use the accelerated failure time model (AFT model) to serve as an
alternative to the commonly used proportional hazards model, competing risk models, and
general frailty models. We can possibly explore the use of some machine learning methods on

survival data, such as decision trees, random forests, and so on.
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APPENDIX A

R CODE FOR SURVIVAL OUTPUT

97



#Survival analysis finalized codes

#primary biliary cirrhosis

#dataset source:
#https://www.kaggle.com/jixing475/mayo-clinic-primary-biliary-cirrhosis-
data?select=pbc.csv

library (survival)

library (readxl)
library (dplyr)
library (msm) #this package is used to fit a weibull/expontential survival fxn
library (flexsurv)
library (mice)
library (survMisc)
library (KMsurv)
library (SurvRegCensCov)
library (ggplot2)
library (pammtools)
library (survminer)

#first, "Status=2" refers to those who are dead, therefore we should censor
the column

#It appears that row 313 and above are all empty, therefore we will delete
them

pbc <- read excel("C:/Schoolwork files/my excel
files/primary biliary cirrhosis.xlsx")

pbc<-pbc[! (pbc$trt=="NA"), ]

pbc<-pbc[1:312,]

pbcSstatus [pbcSstatus==1]<-0

pbcSstatus [pbcSstatus==2]<-1

#We are looking at the time between registration(age) until event occurs
#**Using a Kaplan Meier Curve

event<-survfit (Surv(age,status)~1, conf.type="none", data=pbc)

summary (event)

surv_object<-Surv (time=pbcS$age,event=pbcSstatus)

general kaplan meier <- survfit(surv object ~ 1, data = pbc)

#GGPLOT of a general KM curve

ggsurvplot (general kaplan meier, data = pbc, xlab="Age", ylab="Survival
probability", legend.labs=c("Censoring"),palette=c("blue"), censor.size=5)
#Summary Stats for general KM

summary (general kaplan meier)

#K-M gender survival rate

gendervector<-table (pbc$sex)

gendervector [names (gendervector)=="m"] #36
gendervector [names (gendervector)=="f"]14#276

gender.surv<-survfit (surv_object~sex,data=pbc)

summary (gender.surv)

ggsurvplot (gender.surv, legend. labs=c ("Female (censored) ", "Male (censored) "),
xlab="Age", title="Kaplan Meier Survival Curve")
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#K-M Drug survival curve

drug.surv<-survfit (surv object~trt,data=pbc)

summary (drug.surv)

ggsurvplot (drug.surv, legend. labs=c ("D-Penicillamine", "Placebo"),xlab="Age",
palette=c ("purple","orange"), title="Kaplan Meier Survival Curve")

#Running LR test to verify significance differences
survdiff (Surv(age, status)~sex,data=pbc) #not significant
survdiff (Surv (age, status)~trt,data=pbc) #Drug is somewhat significant

#General Nelson aalen
n.a<-survfit (coxph (Surv (age,status)~1, data=pbc), type="aalen")
summary (n.a) #Summary statistics for NA estimator

#Plotting a general NA estimator

ggsurvplot (n.a, data = pbc,xlab="Age", ylab="Survival
Probability",palette=c("black"),title="Nelson-Ralen Estimator",
legend.labs="Censored", censor.size=4)

#Nelson aalen comparing males vs females
data genderM<-pbc[pbcSsex=="m", ]
data genderF<-pbc[pbcSsex=="£f",]

#Summary statistics for NA stratified by male and female
n.a.m<-survfit (coxph (Surv(age,status)~1, data=data genderM), type="aalen")
summary(n.a.m)

n.a.f<-survfit (coxph (Surv(age,status)~1, data=data genderF), type="aalen")
summary (n.a.f)

#Plotting NA estimator for males/females

plot(n.a.m,col=c("blue"), xlab="Age", ylab="Survival Probability",
main="Nelson Aalen Survival Curves", conf.int=FALSE)

legend ("bottomleft", c("M","F"), lty=1l, col=c("blue","red"))
lines(n.a.f, col="red", conf.int=FALSE)

#Nelson aalen summary statistics comparing Placebo vs D-Penicillamine
data controldrug<-pbc[pbcS$trt==2,] #2 is placebo
data treatmentdrug<-pbc[pbcStrt==1,] #1 is trt

n.a.control<-survfit (coxph (Surv(age,status)~1, data=data controldrug),
type="aalen")

summary(n.a.control)

n.a.trt<-survfit (coxph (Surv(age,status)~1,data=data treatmentdrug),
type="aalen")

summary (n.a.trt)

#Plotting NA estimator for Treatment vs control drug
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plot(n.a.control,col=c ("purple"), xlab="Age", ylab="Survival
Probability",main="Nelson Aalen Survival Curves",conf.int=FALSE)
legend ("bottomleft", c("Placebo","D-Penicillamine"), 1lty=1,
col=c ("purple", "green"))

lines (n.a.trt,col="green", conf.int=FALSE)

#Fitting a parametric survival model for weibull & exp dist

wel surv <- flexsurvreg(Surv(age, status)~1, data=pbc, dist="weibull")
plot (wei surv, ci=FALSE, conf.int=FALSE, ylab="Survival Probability",
xlab="Age", main="Weibull estimator of the survival distribution")

#Try fitting a weibull regression model on all variables
weibull full model<- survreg(Surv (time,status)~trt+ascites+hepato
+spiderst+edematage+sex+bili+chol+albumin+copper+alk.phostast+trigtplatelet+pr
otime+stage, data=pbc,dist="weibull")

summary (weibull full model)

#checking model fit

weibull intercept model<-flexsurvreg (Surv(time, status)~1, data=pbc,
dist="weibull")

print (deviance<- -2* (logLik (weibull intercept model) -

logLik (weibull full model)))

print (p.value<- pchisg(deviance, df=8, lower.tail=FALSE)) # Significantly
less than 0.05

#reducing the model to those with P-values less than 5%

weibull reduced<-survreg (Surv (time, status)~edematage+bilit+albumin+copper+
ast+protime+stage, data=pbc,dist="weibull")

summary (weibull reduced)

#Cox Proportional hazard model on all variables;

cox=coxph (Surv (time, status) ~trt+tascites+hepato+spiders+edematage+sex
+bili+chol+albumin+copper+alk.phos+ast+trig+platelet+protime+stage, data=pbc)
summary (Cox)

basehaz (cox, centered=TRUE)

#reducing the model to those with P-values less than 10%
library(rgl)

library(fields)

cox_reduced<-

coxph (Surv (time, status) ~edemataget+bili+albumin+copper+ast+protime
+stage, data=pbc)

summary (cox reduced)

#The basehaz code estimates the baseline hazard for various times for this

#reduced model
basehaz (cox reduced, centered = TRUE)
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#estimates the baseline survival function computed at the mean values of
#predictors

base.surv<-survfit (cox reduced)

summary (base.surv)

#Estimating the sample means of reduced model significant predictors

#NOTE: there is a missing value in the copper column so that value is omitted
from calculations

summarise (pbc, edema = mean (edema),
age = mean (age),
bili = mean(bili),

albumin = mean (albumin),

copper = mean (copper,na.rm=TRUE),
ast = mean (ast),

protime=mean (protime),

stage=mean (stage))
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APPENDIX B

SURVIVAL OUTPUT FROM R
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Table 1A. Log rank test results on gender survival

= survditt{surv{age,status}~sex,data=pbc) #not signiticant
call:
survdiff(formula = surv(age, status) ~ sex, data = pbc)

N Observed Expected (0-E)AZ/E (0-E)A2/V
sex=fT 276 103 98.2 0.235 1.17
sex=m 36 22 26.8 0.861 1.17

Chisg= 1.2 on 1 degrees of freedom, p= 0.3

Table 1B. Log rank test results on effectiveness of drugs

- 5urﬁd1ff(5uru(aqé,status)~trt,data¥phc} #0rug is somewhat significant
call:
survdiff(formula = surv(age, status) ~ trt, data = pbc)

N Observed Expected (0-E)AZ/E (0-E)AZ/V
trt=1 138 63 74,5 1.20 3.03
trt=2 154 60 50. 5 1.77 3.03

Chisq= 3 on 1 degrees of freedom, p= 0.08
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Table 2. Weibull output on all predictors

> summary[weihu11_fu11_muﬂe1j

call:
survreg(formula

= surv(time, status) ~ trt + ascites + hepato +

spiders + edema + age
alk.phos + ast + trig

dist = "wei
{(Intercept) 1.
trt G.
ascites -1.
hepato -1,
spiders -2,
edema -6.
age -1.
Sexm -2.
bili -4,
chaol -2.
albumin 3.
copper -1.
alk.phos -5,
ast -2.
trig 5.
platelet -3.
protime -1.
stage -2.

Log{scale) -4,
scale= 0.61

Weibull distrib
Loglik(model)=

bull™)

value
1Z2e+01
3%9e-02
1l4e-01
T9e-02
75e-02
G95e-01
80e-02
05e-01
f6le-02
Bde-04
93e-01
Soe-03
07e-06
Ghe-03
28e-04
20e-04
5Z2e-01
The-01
G95e-01

ution
-967.4

ctd.
L 21e+00
. 30e-01
L32e-01
L52e-01
LA%e-01
. 35e-01
LA10e-03
L 93e-01
LAbe-02
.7le-04
LB2e-01
.18e-04
LA2e-05
1%e-03
. 98e-04
L20e-04
L 50e-02
LDoe-01
.b8e-02

I - R B B o R L o el it I ol O S I S o

Loglik(intercept only)= -1053.2
Chisg= 171.68 on 17 degrees of freedom, p= 1.3e-27

+ sex + bili + chol + albumin + copper +

+ platelet + protime + stage, data

Error

Mumber of Mewton-Raphson Iterations: 6

n=276 (36 observations deleted due to missingness)
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z p
.22 = Ze-106
.49 (0.6242
.49 0.6230
.12 0.9060
.19 (0.8532
.96 0.0031
.53 0.0114
L7 002861
.15 0.0016
.05 0. 2957
.15 0.0314
L7 0.0297
.21 (0.8342
.23 0.0255
.66 0.5087
.72 0.4700
L34 0.0193
60 0.0092
.44 1. 2e-10

pbc,



Table 3. Reduced Weibull model on significant predictors

> summary{weibull_reduced)

call:
survreg(formula = Survi{time, status) ~ edema + age + bili + albumin +
copper + ast + protime + stage, data = pbc, dist = "weibull™)

value std. Error z p

{(Intercept) 11.094503 0.999553 11.10 <« Ze-16

edema -0, 562153 0.186190 -3.02 0.00253

age -0, 019662 0.005766 -3.41 0. 00065

bili -0, 049793 0.010771 -4.62 3. Be-06

albumin 0.460951 0.152516 3.02 0.002351

copper -0, 001888 0. 000559 -3.38 0.00073

ast -0, 002927 0.001021 -2.87 0.00416

protime -0.176038 0.056421 -3.12 0.00181

stage -0, 248649 0.083250 -2.99 0.00282

Log(scale) -0.487743 0.070695% -6.90 5. 2e-12

scale= 0.614
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Table 4. Cox Proportional hazard model output

= summary (cox)

call:

coxph{formula = surv(time, status) ~ Trt + ascites + hepato +
spiders + edema + age + sex + bili + chol + albumin + copper +
alk.phos + ast + trig + platelet + protime + stage, data = pbc)

n= 276, number of events= 111
(36 observations deleted due to missingness)

coef exp(coef) se{coef) zZ Pri=|z|)
Trt -1.242e-01 8.832e-01 2.147e-01 -0.5%79 0. 56290
ascites B.8B33e-02 1.092e+00 3.877e-01 0Q.228 0.81955
hepato 2.552e-02 1.026e+00 2.510e-01 0Q.102 0.91900
spiders 1.012e-01 1.107e+00 2.435e-01 0.416 0.67760
edema 1.3 1e+00 2.74%9e+00 3.941e-01 2.566 0.01029 *
age 2.8%90e-02 1.02%9e+00 1.l16d4e-02 2.452 0.01305 *
SEXMm 3.656e-01 1.441e+00 3F.113e-01 1.174 0.24022
bili B.001le-02 1.083e+00 2.550e-02 3I.138 0.00170 **
chol 4,91 8e-04 1.000e+00 4.447e-04 1.107 0O.206829
albumin -7.408e-01 4.767e-01 3.078e-01 -2.407 0.01808 *
copper 2.490e-03 1.002e+00 1.170e-03 2.128 0.03337 *
alk.phos 1.048e-06 1.000e+00 3.96%e-05 0.026 0.57893
ast 4,070e-03 1.004e+00 1.958e-03 2.078 0.03767 *
trig -9, 758e-04 9,99%0e-01 1.333e-03 -0.732 0.468414
platelet 9.01%e-04 1.001e+00 1.184e-03 0.762 0.44629
protime 2.324e-01 1.262e+00 1.061le-01 2Z2.190 O.02850 *
stage 4,545e-01 1.575e+00 1.754e-01 2.591 0O.00958 **
signif. codes: © **#*' 0,001 “**' 0.01 “*' 0.05 "." 0.1 ° ' 1
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Table 5. Reduced Cox Proportional hazards model by 5% significance

= summary{cox_reduced)

call:

coxph(formula = Surv(time, status) ~ edema + age + bili + albumin +
copper + ast + protime + stage, data = pbc)

n= 310, number of events= 124
(2 observations deleted due to missingness)

coef exp(coef) se{coef) z Pri=|z|)

edema 0.8322747  2.2985413 0.3107014 2.679 0.00735 ==
age 0.0326821 1.0332220 0.0094460 3.460 0.00054 ===
bil4 0.0849733 1.0886880 0.0186276 4.35%62 5.07e-06 #*®=
albumin -0.78792031 0.45%47975 0.2551801 -3.088 0.00202 =#=*
copper 0.0027640 1.0027678 0.0009231 2.994 0.00275 #=*
astT 0.0046992 1.0047103 0.0016574 2.835 0.00458 =#==*
protime 0.2676418 1.3068790 0.0911334 2.937 0.00332 *=*
stage 0.4052377 1.4996589 0.1355840 2.989 0.00280 =#==*
Signif. codes: O *#*#=" 0,001 °*#*' Q.01 **' 0.05 "." 0.1 * " 1

exp(coef) exp(-coef) lower .95 upper .95

edema 2.2985 0.4351 1.2502 4.2259
age 1.0332 0.9678 1.0143 1.0525
pilid 1.0887 0.91385 1.0497 1.1292
albumin 0.4548 2.1988 0.2758 0.7499
copper 1.0028 0.9972 1.0010 1.0046
ast 1.0047 0.9953 1.0015 1.0080
orotime 1.3069 0.7652 1.0931 1.5625
stage 1.4997 0. 6668 1.1497 1.9561

—oncordance= 0.832 (se = 0.017 )

Likelihood ratio test= 194.1 on & df, p=<Ze-16
dald test 205.5 on 8§ df, p=<2e-16
score (logrank) test 305.3 on § df, p=<2e-16
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Table 6. Estimates of sample means for significant Cox Predictors under the reduced model

#Estimating the sample means of reduced model significant predictors
#NOTE: there is a missing value in the copper column so that's excluded from calculations
summarise(pbc, edema = mean(edema),

age = mean(age),

bili = mean(bili),

albumin = mean{albumin),

copper = mean(copper,na.rm=TRUE),

ast = mean(ast),

protime=mean{protime),

stage=mean(stage))
A tibble: 1 x B
edema age bili albumin copper ast protime stage

b T el 7
<dbi> <db]

B+ + + Y

iy T = i T = it T = oty 7= A 7= =i T = .
<dDi> <dDi> <db > <@ i  <dpi> <dli> >

0.111 530.0 3.26 3.52 97.6 123. 10.7 3.03
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Table 7. Baseline Cox Survival Approximation at about t=1925

#estimates the baseline survival function computed at the mean wvalues of predictors
base.surv<-survfit(cox_reduced)
summarvibase. surv)

taa pts e R L LT

F
#estimates the baseline survival function computed at the mean values of predictors
base. surv<-survfit{cox_reduced)
summary(base. surv)
all: survfit(formula = cox_reduced)

[

time n.risk n.event survival std.err lower 93% CI upper 95% CI

41 310 1 0.999 0.000652 0.998 1.000
51 309 1 0.999 0.001095 0.996 1.000
71 308 1 0.998 0.001444 0.995 1.000
77 307 1 0.997 0.001746 0.993 1.000
110 306 1 0.996 0.002029 0.992 1.000
130 305 1 0.995 0.002292 0.991 1.000
131 304 1 0.994 0.002546 0.989 0.999
1AN N2 1 N a2 N NN2E20 N afa m God
1741 168 1 0.787 0.028496 0.733 0. 844
1786 161 1 0.780 0.029041 0.725 0.839
1827 158 1 0.773 0.029586 0.718 0.834
1847 155 1 0.767 0.030132 0.710 0.828
2055 141 1 0.752 0.031333 0.693 0.816
2081 140 1 0.745 0.031946 0. 685 0. 810
2090 139 1 0.738 0.032539 0.676 0. 804
2105 138 1 0.730 0.033104 0. 668 0.798
2224 127 1 0.722 0.033732 0.659 0.792
2256 123 1 0.714 0.034345 0.650 0.785
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APPENDIX C

LONGITUDINAL ANALYSIS R CODES

119



#Longitudial code for Normal,Gamma,Binary, & Poisson

library (readxl)

library(nlme)

library (MuMIn)

library (lmed)

library (dplyr)

library (geepack)

library (reshape?2)

library (rcompanion)

Hhatddh A A A FHFHFHFHHH#4# NORMAL RESPONSE ########4#4#4H444
FHAES AR A A A A

#Blood pressure longitudinal study on simulated data
bp <- read excel("C:/Schoolwork files/my excel files/bp.xlsx")

#creating long-form data set

longform.data.bp<- melt (bp, id.vars=c("ID", "GENDER",
"ACTIVITY","SODIUM", "HISTORY","CATEGORY"), variable.name="TIME",
value.name="Blood Pressure")

#sorting long-form data set by id
longform.data.bp<- longform.data.bp[order (longform.data.bp$ID), ]

#creating numeric variable for time
time.factor<- ifelse(longform.data.bpS$STIME=="WEEK1", 1,
ifelse (longform.data.bp$TIME=="WEEK2", 2,
ifelse (longform.data.bp$TIME=="WEEK3", 3,
ifelse(longform.data.bp$TIME=="WEEK4", 4,5
))))
#specifying reference categories
longform.data.bpSBlood Pressure<-as.numeric(longform.data.bp$Blood Pressure)
longform.data.bp$SGENDER<-as.factor (longform.data.bp$SGENDER)

#Converting to Factor

longform.data.bp$SODIUM<-as.factor (longform.data.bp$SODIUM)
longform.data.bpSHISTORY<-as.factor (longform.data.bp$SHISTORY)
str (longform.data.bp)

history factor<-relevel (longform.data.bp$SHISTORY, ref="Y")

sex factor<-relevel (longform.data.bp$SGENDER, ref="F")

sodium factor<-relevel (longform.data.bp$SODIUM, ref=3)

#plotting histogram with fitted normal density
hist (longform.data.bp$Blood Pressure,main = "Histogram of Normal Response",
xlab="Syatolic Blood Pressure in mm/Hg")

#testing for normality of distribution
shapiro.test (longform.data.bp$SBlood Pressure)
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#Fitting random s/i model

summary (fitted.model<- Ime (Blood Pressure ~ sex factor+ACTIVITY+sodium factor
+HISTORY+CATEGORY+time.factor, random=~ 1 +time.factor|ID,

control=list (opt="optim"),data=longform.data.bp))

intervals (fitted.model)

#checking model fit
null.model<- glm(Blood Pressure ~ .,data=longform.data.bp)
print (deviance<- -2* (logLik (null.model)-logLik(fitted.model)))

print (p.value<- pchisg(deviance, df=3, lower.tail=FALSE))

#rx***Fitting NORMAL GEE models

#fitting GEE model with autoregressive working correlation matrix

summary (arl.fitted.model.normal<- geeglm(Blood Pressure ~ sex factor
+ACTIVITY+sodium factor+HISTORY+CATEGORY+time.factor, data=longform.data.bp,
id=ID, family=gaussian (link="identity"), corstr="arl"))
QIC(arl.fitted.model.normal) #93101.69

# #fitting GEE model with unstructured working correlation matrix

summary (uns.fitted.model.normal<- geeglm(Blood Pressure ~ sex factor
+ACTIVITY+sodium factor+HISTORY+CATEGORY+time.factor, data=longform.data.bp,
id=ID, family=gaussian(link="identity"), corstr="unstructured"))
QIC(uns.fitted.model.normal) #96540.92

#fitting GEE model with exchangeable working correlation matrix

summary (exch.fitted.model.normal<- geeglm(Blood Pressure ~ sex factor
+ACTIVITY+sodium factor+HISTORY+CATEGORY+time.factor, data=longform.data.bp,
id=ID, family=gaussian(link="identity"), corstr="exchangeable"))

QIC (exch.fitted.model.normal) #92964.38 ******Good fit****

#fitting GEE model with independent working correlation matrix

summary (ind.fitted.model.normal<- geeglm(Blood Pressure ~ sex factor
+ACTIVITY+sodium factor+HISTORY+CATEGORY+time.factor, data=longform.data.bp,
id=ID, family=gaussian(link="identity"), corstr="independence"))
QIC(ind.fitted.model.normal) #92981

FHEFHA A A R A R R AR R AR R R R A R R A R

HHFHHFF S F A F A F A HHE GAMMA RESPONSE ########## 444444

#Cancer Longitudinal analysis
cancer <- read excel ("C:/Schoolwork files/my excel files/cancer.xlsx")
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###THE MISSING VALUES (DOTS) ARE CONVERTED TO NA***
cancerSWEEK6 [cancerSWEEK6 == "."] <- NA
cancer<-na.omit (cancer)

str (cancer)

cancerSWEEK6<-as.numeric (cancerSWEEK®6)

#creating long-form data set
longform.data.cancer<- melt (cancer, id.vars=c("ID", "TRT", "AGE","WEIGHT",
"STAGE", "SEX"), variable.name="TIME", value.name="oral cond")

#sorting long-form data set by id
longform.data.cancer<- longform.data.cancer[order (longform.data.cancer$ID), ]

#fcreating numeric variable for time
time.factor<- ifelse(longform.data.cancer$TIME=="WEEKO", O,
ifelse (longform.data.cancer$STIME=="WEEK2",

2,ifelse(longform.data.cancer$STIME=="WEEK4",4,6)))

#specifying reference categories
longform.data.cancer$TRT<-as.factor (longform.data.cancerS$STRT)
longform.data.cancer$SEX<-as.factor (longform.data.cancer$SEX)
treatment factor<- relevel (longform.data.cancer$STRT, ref="Cx")
sex_factor<—relevel(longform.data.cancer$SEX,ref="F")
str(longform.data.cancer)

#plotting histogram with fitted normal density

longform.data.cancer$oral cond<-as.numeric(longform.data.cancerSoral cond)
plotNormalHistogram(longform.data.cancerSoral cond,xlab="Response",main="Gamm
a Response Distribution")

#testing for normality of distribution
shapiro.test (longform.data.cancer$oral cond) #Significantly less than 0.005

#fitting gamma regression model with random slope and intercept

summary (gamma.fitted.model<- glmer (oral cond ~ sex factor+treatment factor +
AGE+WEIGHT+STAGE+time.factor+ (1 + time.factor| ID),
data=longform.data.cancer, family=Gamma (link='log')))

#checking model fit

null.model<- glm(oral cond ~1,data=longform.data.cancer,

amily=Gamma (1link="'log"))

gamma.fitted.model.deviance.testing<-glm(oral cond ~ sex factor

+treatment factor+AGE+ WEIGHT+STAGE+time.factor, data=longform.data.cancer,
family=Gamma (link="'log"'))
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print (deviance<- -2* (logLik (null.model) -

logLik (gamma.fitted.model.deviance.testing)))

print (pvalue<- pchisqg(deviance, df=7, lower.tail = FALSE)) #Fitted model
better

#fitting GEE model with autoregressive working correlation matrix

summary (arl.fitted.model.gamma<- geeglm(oral cond ~ sex factor

+treatment factor+AGE+WEIGHT+STAGE+time.factor, data=longform.data.cancer,
id=ID, family=Gamma (link="log"), corstr="arl"))
QIC(arl.fitted.model.gamma) #1102.12

# #fitting GEE model with unstructured working correlation matrix

summary (uns.fitted.model.gamma<- geeglm(oral cond ~ sex factor

+treatment factor+AGE+WEIGHT+STAGE+time.factor, data=longform.data.cancer,
id=ID, family=Gamma (link="log"), corstr="unstructured"))

QIC (uns.fitted.model.gamma) #1097.33 ***BEST FIT***

#fitting GEE model with exchangeable working correlation matrix

summary (exch.fitted.model.gamma<- geeglm(oral cond ~ sex factor
+treatment factor+AGE+WEIGHT+STAGE+time.factor, data=longform.data.cancer,
id=ID, family=Gamma (link="log"), corstr="exchangeable"))

QIC (exch.fitted.model.gamma) #1101.11

#fitting GEE model with independent working correlation matrix

summary (ind.fitted.model.gamma<- geeglm(oral cond ~ sex factor

+treatment factor+AGE+WEIGHT+STAGE+time.factor, data=longform.data.cancer,
id=ID, family=Gamma (link="log"), corstr="independence"))
QIC(ind.fitted.model.gamma)#1111.5

idgddsdddssadadddssddddddssadadddssadadddssadadddaatadadiaaaanRR R nnERddddi

#h#dfH At A A 444444 BINARY RESPONSE ###########444#44
#Binary logistic longitidunal on anthrax *Fake (made up)* data
anthrax <- read excel("C:/Schoolwork files/my excel
files/anthrax.fake.data.xlsx")

#creating longform dataset
longform.datax<- melt (anthrax, id.vars=c("ID", "age","medicine","gender",
"risk","contacted"), variable.name="monthn",
value.name="remission from anthrax")
month<- ifelse(longform.datax$Smonthn=="monthl"', 1,
ifelse (longform.datax$monthn=="month2', 2,
ifelse (longform.datax$monthn=="'month3"', 3,
ifelse (longform.datax$monthn=="'month4"', 4,
ifelse (longform.datax$monthn=="'month5"',5,
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ifelse (longform.datax$monthn=="month6', 6,
ifelse (longform.datax$monthn=="month7',7,
ifelse (longform.datax$monthn=="month8', 8,
ifelse (longform.datax$monthn=="month9"', 9,
ifelse (longform.datax$monthn=="'month10', 10,

ifelse (longform.datax$monthn=="monthl1',11,12)))))))))))
#Specifying factors

longform.datax$contacted<-as.factor (longform.datax$contacted)
contact factor<- relevel (longform.dataxScontacted, ref="Y")
longform.datax$medicine<-as.factor (longform.dataxSmedicine)
longform.datax$gender<-as.factor (longform.datax$gender)

#fitting generalized random slope and intercept model, binary logistic
summary (fitted.model<- glmer (remission from anthrax ~ age+medicine+gender
+risk+contact factor+month+ (l+month|ID), data=longform.datax,
family=binomial (1link="logit')))#

hist (longform.datax$remission from anthrax,main="Histogram of binary
response",xlab="Response")

#checking model fit by deviance test
fitted.model.deviance.testing<-glm(remission from anthrax ~ age+medicine+
gender+risk+contact factor+ month, data=longform.datax,

family=binomial (1ink="logit"'))

null.model<- glm(remission from anthrax ~ 1, data=longform.datax,
family=binomial (link="'logit'))

print (deviance<- -2* (logLik (null.model) -
logLik (fitted.model.deviance.testing)))
print (p.value<- pchisqg(deviance, df=7, lower.tail = FALSE))

SRR R R R RS E & A A A AR ACTNE L i i

#fitting GEE model with autoregressive working correlation matrix

summary (arl.fitted.log.model<- geeglm(remission from anthrax ~ age+medicine
+gender+risk+contact factor+month, data=longform.datax, id=ID,
family=binomial (1link="1logit"), corstr="arl"))

QIC(arl.fitted.log.model) #1441

#fitting GEE model with exchangeable working correlation matrix

summary (exch.fitted.log.model<- geeglm(remission from anthrax ~ age+medicine
+gender+risk+contact factor+month, data=longform.datax, id=ID,
family=binomial (1link="1logit"), corstr="exchangeable"))
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QIC (exch.fitted.log.model) #1441

#fitting GEE model with independent working correlation matrix

summary (ind.fitted.log.model<- geeglm(remission from anthrax ~ aget+medicine +
gender+risk+contact factor+month, data=longform.datax, id=ID,

family=binomial (1ink="1logit"), corstr="independence"))
QIC(ind.fitted.log.model) #1441

# all 3 had the same QIC so it's up to the person to choose which one they
want

FHEF A A A A R A R R A R R A R R R A R R R R A
FhAFHHE A F S H 44 POISSON RESPONSE ##### #4444 #4444

#Cigerette medicine effectiveness Longitudinal study *Fake* data
cig <- read excel("C:/Schoolwork files/my excel
files/cigarette.longitudinal.xlsx")

#fcreating long-form data set

longform.data.cig<- melt(cig, id.vars=c("ID", "SEX", "TRT","AGE","WEIGHIN",
"Intention", "Addiction.Status"), variable.name="TIME",

value.name="N CIGARETTES")

#sorting long-form data set by id
longform.data.cig<- longform.data.cigl[order (longform.data.cig$ID), ]

#specifying reference categories
longform.data.cig$TRT<-as.factor (longform.data.cig$TRT)
longform.data.cig$SEX<-as.factor (longform.data.cig$SEX)
treatment factor<- relevel (longform.data.cig$TRT, ref="Cx")
sex_factor<—relevel(longform.data.cig$SEX,ref:"F")

fcreating numeric variable for time
time.factor<- ifelse(longform.data.cig$TIME=="Mol", 1,
ifelse (longform.data.cigS$TIME=="Mo2", 2,
ifelse (longform.data.cig$TIME=="Mo3", 3,
ifelse(longform.data.cig$TIME=="Mo4", 4,

ifelse (longform.data.cig$TIME=="Mo5",5,6
)))))
#plotting histogram with fitted poisson response density
hist (longform.data.cig$N CIGARETTES,main ="Histogram of Poisson Response",
xlab="Total cigarettes smoked")

#testing for normality of distribution
shapiro.test (longform.data.cig$N CIGARETTES)
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#Fitted Poisson model

summary (fitted.model<- glm(N CIGARETTES ~ treatment factor+AGE
+WEIGHIN+Intention+Addiction.Status+time.factor+sex factor,
family=poisson (link="1log"), data=longform.data.ciqg))

#checking model fit

null.model<- glm(N CIGARETTES ~ 1, data=longform.data.cig, family =
poisson(link = "log"))

print (deviance<- -2* (logLik(null.model)-logLik(fitted.model)))

print (p.value<- pchisg(deviance, df=7, lower.tail=FALSE))

#fitting random slope and intercept Poisson model

summary (fit.pois<-glmer (N CIGARETTES ~ sex factor+treatment factor+AGE
+WEIGHIN+Intention+Addiction.Status+time.factor+ (l+time.factor|ID),
data=longform.data.cig, family=poisson(link="1log")))

ST Y O i e
#fitting GEE model with autoregressive working correlation matrix

summary (arl.fitted.pois.model<- geeglm (N CIGARETTES ~ sex factor
+treatment factor+AGE+WEIGHIN+Intention+Addiction.Status+time.factor,
data=longform.data.cig, id=ID, family=poisson(link="log"), corstr="arl"))
QIC(arl.fitted.pois.model) #-25573.84 *** BEST FIT ***

#fitting GEE model with exchangeable working correlation matrix
summary (exch.fitted.pois.model<- geeglm (N CIGARETTES ~ sex factor
+treatment factor+AGE+WEIGHIN+Intention+Addiction.Status+time.factor,
data=longform.data.cig, 1id=ID, family=poisson(link="log"),
corstr="exchangeable"))

QIC (exch.fitted.pois.model) #-25437.9

#fitting GEE model with independent working correlation matrix
summary (ind.fitted.pois.model<- geeglm (N CIGARETTES ~ sex factor
+treatment factor+AGE+WEIGHIN+Intention+Addiction.Status+time.factor,
data=longform.data.cig, 1id=ID, family=poisson(link="log"),
corstr="independence"))

QIC(ind.fitted.pois.model) #-25552.6

#fitting GEE model with unstructured working correlation matrix
summary (uns.fitted.pois.model<- geeglm (N CIGARETTES ~ sex factor
+treatment factor+AGE+WEIGHIN+Intention+Addiction.Status+time.factor,
data=longform.data.cig, 1id=ID, family=poisson(link="log"),
corstr="unstructured"))

QIC(uns.fitted.pois.model) #-25552.26
FHEHHHHAH AR H AR AR F AR H AR
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APPENDIX D

LONGITUDINAL OUTPUT AND DATASET SAMPLES
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Table 1A. Shapiro Wilk normality test results

Shapiro-wilk normality test

data: Jlongform.data.bpiTOTALWEEK
W = 0.99024, p-value = 0.1338

Table 1B. Deviance testing results

> #checking model fit

= null.model<- glm(Blood_Pressure ~ .,data=longform.data.bp)

» print{deviance«<- -2%*(TogLik(null.model)}-TogLik{fitted. model}))
"Tog Lik.® 231 (df=13)

= print{p.value<- pchisq{deviance, df=3, Tower.tail=FALSE)})

"lTog Lik.' 1.03e-49 (df=13)
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Table 2A. Normal Response random slope and intercept output

Linear mixed-effects model fit by REML
Data: longform.data.bp

ATC BIC TlogLik

1768 1809 -872

rRandom effects:
Formula: ~1 + time.factor | ID
structure: General positive-definite, Log-cholesky parametrization
stdDev Corr
(Intercept) 16.%96 (Intr)
time.factor 9.15 -0.794

rResidual 7.51
Fixed effects: Blood_Pressure ~ sex_factor + ACTIVITY + sodium_factor + HISTORY + CATEGOR
or

value std.Error DF t-value p-value

(Intercept) 111.0 9.64 179 11.52 0. 0000
sex_factorM -3.8 3.96 38 -1.47 0.1505
ACTIVITY -1.4 0.68 38 -2.08 0.0445
sodium_factorl -20.4 8.03 38 -2.54 0.0152
sodium_factor2 -3.6 6.03 38 -0.60 0.5533
HISTORYY -B.5 3.73 38 -2.29 0.0277
CATEGORY 18.8 2.16 38 8.72 0.0000
time. factor -9.9 1.41 179 -7.04  0.0000

Correlation:
(Intr) sx_fcM ACTIVI sdm_fl sdm_f2 HISTOR CATEGO
sex_fTactorm 0.142
ACTIVITY -0.273 0.013
sodium_factorl -0.795 -0.316 -0.083
sodium_factor2 -0.638 -0.021 -0.246 0.697

HISTORYY -0.156 -0.270 0.125 0.082 -0.194
CATEGORY -0.831 -0.325 -0.116 0.842 0.694 -0.008
time.factor -0.22% 0.000 O0.000 0.000 ©0.000 0.000 O.000

Standardized within-Group Residuals:
Min ol Med a3 Max
-2.156549 -0.470510 0.000273 0.464679 2.123249

Number of Observations: 225
Number of Groups: 45
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Table 2B. Normal response GEE model with AR1 correlation matrix

= Fersespitring NORMAL GEE models

= #fitting GEE model with autoregressive working correlation matrix

> summary(arl.fitted.model.normal<- geegim(Blood_Pressure ~ sex_factor+ACTIVITY+sodium_factor+HISTORY+CATE
ORY

+ +time.factor,

+ data=longform. data. bp,

+ id=ID, family=gaussian(link="1identity"),
+ corstr="arl"})

call:

geegIim(formula = Blood_Pressure ~ sex_factor + ACTIVITY + sodium_factor +
HISTORY + CATEGORY + time.factor, family = gaussian(link = "identity”),
data = Tongform.data.bp, id = ID, corstr = "arl")

Coefficients:
Estimate std.err wald pri=|w|)

(Intercept) 119. 586 10.168 138.32 < 2e-1f %%

sex_factorMm -5.720 5.228 1.20 0.274

ACTIVITY -1.009 0. 807 1.56 0.211

sodium_factorl -11.785 9. 983 1.39 0.238

sodium_factor2 -1.817 6. 308 0.08 0.773

HISTORYY -11.022 4. 890 5.08 0.024 *

CATEGORY 14,583 2.303 40,10 2.4e-10 #*=%*

time.factor -10. 004 1.347 55.19 1.1e-13 ##%

Signif. codes: © *#*%’ 0,001 *#*=*° 0.01 ‘*" Q.05 ‘.” 0.1 * "1

Correlation structure = arl
Estimated Scale Parameters:

Estimate std.err
(Intercept) 414 57
Link = identity

Estimated Correlation Parameters:
Estimate std.err
alpha 0.574 0.074
Numher of clusrers: 45 wmaximum cluster size: §

> QIC(arl.fitted. model.normal) #93101. 69
QIC QIcu guasi Lik CIC params QICC
93101.69 93100.18 -46542.09 §.75 §.00 93102.53

S
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Table 2C. Normal response GEE model with unstructured working correlation matrix

Call:

geegim{formula = Blood_Pressure ~ sex_factor + ACTIVITY + sodium_factor +
HISTORY + CATEGORY + time.factor, family gaussian(link = "identity"),
data = Tongform.data.bp, id = ID, corstr "unstructured")

Coefficients:
Estimate std.err wWald Pri=|w|)

{(Intercept) 116.471 8.027 210.55 < Ze-1g #=#=
sex_factorm -5.9881 4,042 2.1%9 0.139

ACTIVITY -1.224 0.631 3.77 0.052

sodium_factorl -16.123 7. 866 4,20 0.040 *
sodium_factor? -2. 886 4,917 0.34 0. 557

HISTORYY -9, 767 3.981 6.02 0.014 =

CATEGORY 16.491 1.787 B85.14 <« Ze-16 ##*=
time.factor -10.151 1.330 58.24 2.3e-14 ===

signif. codes: © *#**+*° 0.001 ‘%%’ 0.01 **' 0.05 *." 0.1 * " 1

Correlation structure = unstructured
Estimated Scale Parameters:

Estimate std.err
{Intercept) 429 60.1
Link = identity

Estimated Correlation Parameters:
Estimate std.err

alpha.1:2 0.301593 0.0577
a1pha.1:3 0.105241 0.0528
alpha.1:4 0.000876 0.0938
alpha.1:5 -0.095878 0.1367
alpha.2:3 0.282542 0.0993
a1pha.2:4 0.212741 0.1245
alpha.2:5 0.121434 0.1701
alpha. 3:4 0.5394030 0.1026
alpha.3:5 0.753654 0.1243
alpha.4:5 1.641975 0.0717
Number of clusters: 45 Maximum cluster size: 5

-

> QIC(uns.Titted.model. normal) #96540.92
QIC QICu guasi Lik CIC params QICC
95540.92 96545.94 -48264.97 5.49 8.00 96544, 24

> |
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Table 2D. Normal response GEE model with exchangeable working correlation matrix

call:

geeglm{formula = Blood_Pressure ~ sex_factor + ACTIVITY + sodium_factor +
HISTORY + CATEGORY + time.factor, family = gaussian(link = "identity"),
data = longform.data.bp, id = ID, corstr = "exchangeable")

Coefficients:
Estimate std.err wald Pr=|w|)

(Intercept) 120.18 9,62 155.90 <= Ze-1f &%=
sex_factorm -0, 38 5.03 1.61 0,204

ACTIVITY -1.09% 0.79 1.91 0.167

sodium_factorl -13.21 .38 1. 98 0.159

sodium_factor?2 -2.54 5.93 0.18 0. 668

HISTORYY -10. 64 4,81 4,90 0.027 =

CATEGORY 14. 61 2.14 46.53 9.0e-12 #%%

time. factor -9.92 1.39 50.89 1.1e-12 ##=*

signif. codes: O **#=" 0,001 “**' Q.01 **' 0.05 “." 0.1 * ' 1

correlation structure = exchangeable
Estimated Scale Parameters:

Estimate std.err
{Intercept) 413 56.9
Link = identity

Estimated Correlation Parameters:
Estimate std.err
alpha 0.369 0.0776

Number of clusters: 45 Maximum cluster size: 5

= QIC(exch. fitted. model. normal) #92964. 38 ##wwwwgood figpwwess
QIcC QICu Quasi Lik CIC params QICC

92964, 38 92960. 88 -46472.44 9.75 B.00 92965.21

=
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Table 2E. Normal response GEE model with independent working correlation matrix

> #fitting GEE model with independent working correlation matrix
> summary(ind. fitted. model. normal<- geeglm{(Blood_Pressure ~ sex_factor+ACTIVITY+50(
ORY

+ +time. factor,

+ data=longform. data. bp,

+ id=ID, family=gaussian({link="identity")
+ corstr="independence"})

call:

geeglm(formula = Blood_Pressure ~ sex_factor + ACTIVITY + sodium_factor +
HISTORY + CATEGORY + time.factor, family gaussian(link = "didentity"),
data = longform. data.bp, id = ID, corstr "independence™)

Coefficients:
Estimate std.err wald pri=|w|)

(Intercept) 120.18 9,62 155.90 < 2e-1f #uw
sex_factorMm -G.38 5.03 1.61 0.204

ACTIVITY -1.0%9 0.79 1.91 0.167

sodium_factorl -13.21 g, 38 1.98 0.159

sodium_factor2 -2.54 5.93 0.18 0. 668

HISTORYY -10. 64 4,81 4.90 0.027 *

CATEGORY 14.61 2.14 46.53 9.0e-12 H%n*

time. factor -9.92 1.39 50.69 1.1e-12 #uw

signif. codes: 0O *#%%' Q. 001 “**' Q.01 “*' 0.05 ‘." 0.1 " " 1

Correlation structure = independence
Estimated Scale Parameters:

Estimate std.err

{(Intercept) 413 56.90
Number of clusters: 45 Maximum cluster size: 5
> QIC(ind.fitted.model.normal}#92981
QIC QICu Quasi Lik CIC params QICC
92981 92961 -46472 18 8 92981

> |
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Table 3A. Normality test for gamma response

Shapiro-wilk normality test

data: TJlongform.data.cancerioral_cond
W= 0.9, p-value =<2e-16

Table 3B. Deviance testing results for gamma response

#checking model fit

null.model<- glm(oral_cond ~1,data=longform.data.cancer, family=Gamma(link="Tog'))

gamma. fitted. model.deviance. testing<-glm{oral_cond ~ sex_factor+treatment_factor + AGE
+ WEIGHT+STAGE+Time.factor,

data=Tlongform. data. cancer,

family=Gamma(link="log"))

primt{deviance<- -2*{logLik{null.model)-logLik{gamma.fitted.model. deviance.testing)))

Tog Lik.' 294 (df=2)

> print(pvalue<- pchisg(deviance, df=7, lower.tail = FALSE)})} #Fitted model better

"lTog Lik." 1.16e-39 (df=2)

=

=% 4+ N W
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Table 4A. Random Slope and intercept Gamma output

= #Fitting gamma regression model with random slope and intercept
= summary(gamma.fitted. model<- glmer (oral_cond ~ sex_factor+treatment_factor + AGE

+ + WEIGHT+STAGE+Time. factor+
+ (1 + time.factor| ID), data=longform.data.cancer,
+ family=Gamma(link="log"}))

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmermod’]
Family: Gamma ( log )
Formula: oral_cond ~ sex_factor + treatment_factor + AGE + WEIGHT + STAGE +
time.factor + (1 + time.factor | ID)
Data: longform.data.cancer

ATIC BIC TogLik deviance df.resid
1139 1183 -558 1117 389

scaled residuals:
Min 10 Median El] Max
-1.8233 -0.3158 -0.0459 0.28B62 2.5815

random effects:

Groups Name variance std.Dev. Corr

ID (Intercept) 0.06158 0.2482
time.factor 0.00525 0.0725 -0.74

Residual 0.01557 0.1248

Number of obs: 400, groups: 1ID, 100

Fixed effects:
Estimate std. Error t value Pr(=|z|)

(Intercept) 1.643049 0.1928070 B.30 < 2e-1g #w*
sex_factorM -0.123060 0.063315 -1.94 0.052 .
treatment_factorTx 0.322459 0.156171 2.06 0.039 =

AGE -0. 001522 0.001824 -0.83 0.404
WEIGHT 0. 000130 0.000655 Q.20 0.843

STAGE 0. 044580 0.029981 1.49 0.137
time.factor 0. 083266 0.012931 6.44 1,2e-10 #w*
signif. codes: © “##*' Q0,001 “**’ Q.01 **" 0.05 “." 0.1 * " 1

correlation of Fixed effects:

(Imtr) sx_fcM trtm_T AGE WEIGHT STAGE
sex_factorMm -0.172
tromnt_fctT -0.512 -0.025

AGE -0.485 0.272 -0.005
WEIGHT -0.673 -0.116 0.289 -0.080
STAGE -0.113 -0.093 -0.227 0.004 -0.158

time.factor -0.175 0.003 0.068 0.002 0.017 -0.019
convergence code: 0

= QIC(arl.fitted.model.gamma) #1102.12
QIC QICu qQuasi Lik CIC params QICC
1102.12 1101.25 -543.62 7.44 7.00 1102.49
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Table 4B. Gamma GEE model unstructured working correlation matrix

> # #fitting GEE model with unstructured working correlation matrix
> summary(uns.fitted. model. gamma<- geeglm(oral_cond ~ sex_factor+treatment_factor + AGE +
+ WEIGHT+STAGE+Time. Tactor,

+ data=longform. data. cancer,

+ id=1D, family=Gamma{link="1og"),
+ corstr="unstructured"))

call:

geegim(formula = oral_cond ~ sex_factor + treatment_factor +
AGE + WEIGHT + STAGE + time.factor, family = Gamma(link = "log"),
data = longform.data.cancer, id = ID, corstr = "unstructured")

Coefficients:

Estimate std. err wald Pri=|w|)
{(Intercept) 1.515796 0.138393 119.96 <Ze-1p #¥*
sex_factorm -0.125978 0.050097 6.32 0.012 =
treatment_factorTx 0.663875 0.050970 169.65 <Ze-1f #w®*
AGE -0.001302 0.001434 0.90 0.342
WEIGHT 0.000680 0.000532 1.63 0.201
STAGE 0.019892 0.0242E85 Q.67 0.413
time.factor 0.068572 0.007916 75.04 <Ze-16 #¥*
signif. codes: @ “#***' 0,001 ‘**' 0.01 ‘*' 0.05 “.' 0.1 °
Correlation structure = unstructured

Estimated Scale Parameters:

Estimate std.err

(Intercept)
Link = identity

0.102 0.00871

Estimated Correlation Parameters:
Estimate 5td.err

alpha.1:2  1.0973
alpha.1:3 0.3948
alpha.1:4 -0.0734
alpha.2:3 0.5157
alpha.2:4 0.2773
alpha.3:4  0.3379

Number of clusters:

o0 o0 o0

. 0804
.0728
.0839
.0574
L0611
. 0466

100 Maximum cluster size: 4

> QIC{uns.fitted. model. gamma) #1097.33 **¥BEST FIT***

QIC
1097.33

QICu Quasi Lik
1099, 21

CIC

-542.61 6.06

136

params
7.00

QICC
1098. 28



Table 4C. Gamma GEE model with exchangeable working correlation matrix

> #fitting GEE model with exchangeable working correlation matrix
> summary(exch.fitted.model. gamma<- geeglm{oral_cond ~ sex_factor+treatment_factor + AGE +
+ WEIGHT+STAGE+Time. factor,

+ data=longform. data. cancer, id=ID,
+ family=Gamma(Tink="Tog"),
+ corstr="exchangeable"))
call:
geegIm(formula = oral_cond ~ sex_factor + treatment_factor +
AGE + WEIGHT + STAGE + time.factor, family = Gamma(link = "Tog"),
data = Tongform. data. cancer, id = ID, corstr = "exchangeable™)

coefficients:

Estimate std. err wald Pr(=|w|)
(Intercept) 1.572971 0.121377 167.45 <Za-1lh *%*
sex_factorm -0.122118 0.043442 7.90 0.0049 =*
treatment_factorTx 0.459249 0.043778 110.05 <2e-16 w**
AGE -0.001196 0.001259 0. 90 0.3423
WEIGHT 0.000516 0.000475 1.18 0.2772
STAGE 0.029020 0.020623 1.498 0.1594
time. factor 0.080849 0.009158 77.45 <Za-1lh *%*
signif. codes: 0 ‘'##**' Q_001 ‘**' 0.01 ‘*' Q.05 ‘.' 0.1 ° ' 1

correlation structure = exchangeable
Estimated Scale Parameters:

Estimate std.err
(Intercept) 0.0942 0.00873
Link = identity

Estimated Correlation pParameters:
Estimate std.err
alpha 0.35%6 0.0532

Number of clusters: 100 maximum cluster size: 4
> QIC(exch.fitted. model. gamma) #1101.11
QIC QICu gQuasi Lik CIC params QICC
1101.11 1098.03 -542.02 8.54 7.00 1101.48
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Table 4D. Gamma GEE model with independent working correlation matrix

= #Titting GEE model with independent working correlation matrix
= summary(ind.fitted. model. gamma<- geeglm(oral_cond ~ sex_factor+treatment_factor + AGE +
+ WEIGHT+STAGE+time. factor,

- data=longform. data. cancer, id=ID,
- family=camma(link="1og"},
- corstr="independence"))
call:
geegIm(formula = oral_cond ~ sex_factor + treatment_factor +
AGE + WEIGHT + STAGE + time.factor, family = Gamma(link = "Tog"),
data = longform.data.cancer, id = ID, corstr = "independence")

Coefficients:
estimate std.err  wald Pri=|(wl|)

(Intercept) 1.572973 0.121377 167.95 <2e-16 wE*
sex_TactorMm -0.122118 0.043442 7.90 0.0049 *=
treatment_factorTx 0.459247 0.043778 110.05 <le-1fh #¥#®

AGE -0.0011%6 0.001259 Q.90 0.3423

WEIGHT 0.000516 0.000475 1.18 0.2772

STAGE 0.029020 0.020623 1.498 0.1594

time. factor 0.080849 0.009158 77.94 <Z2a-1G wE*
Signif. codes: 0 “##*' 0,001 ‘==’ 0.01 **' 0.05 "." 0.1 ° "1

Correlation structure = independence
Estimated Scale Parameters:

Estimate std.err
(Intercept) 0.0942 0.00873

number of clusters: 100 mMaximum cluster size: 4
> QIC(ind.fitted. model. gamma)#1111. 5
qQIC QICu Quasi Lik CIC params QICC
1111.5 1098.0 -542.0 13.7 7.0 1111.8
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Table 4E. Gamma GEE model with Autoregressive working correlation matrix

Loz, 2 AUVITUO. W T AL . LD ¥ e Lill.w
> #Fitting GEE model with autoregressive working correlation matrix
= summary(arl.fitted. model. gamma<- geeglm(oral_cond ~ sex_factor+treatment_factor + AGE +

+ WEIGHT+STAGE+Time. Tactor,
+ data=longform. data. cancer,
+ id=1Dp, family=Gamma(link="Tog"),
+ corstr="ar1"))
call:
geegim(formula = oral_cond ~ sex_factor + treatment_factor +
AGE + WEIGHT + STAGE + Time.factor, family = Gamma{link = "Tog"),
data = longform. data.cancer, id = ID, corstr = "arl™)

Coefficients:
Estimate std.err Wald Pri=|w]|)

(Intercept) 1.5378965 0.119159 175.59 <2e-16 wwE
sex_fTactorM -0.122954 0.042772 B.26 0. 004 w=*
treatment_factorTx 0.443266 0.042878 106.87 <Ze-16 #¥¥

AGE -0.001201 0.001240 0. 94 0.333

WEIGHT 0.000495 0.000467 1.12 0. 289

STAGE 0.030782 0.020160 2.33 0.127
time.factor 0.080929 0.009143 78.35 <Ze-16 ###
Signif. codes: 0 “#*¥%*" 0,001 **%*° 0.01 **' Q.03 *." 0.1 * " 1

correlation structure = arl
Estimated Scale Parameters:

Estimate std.err
(Intercept) 0.0948 0.008938
Link = identity

Estimated Correlation Parameters:
Estimate std.err
alpha 0.515 0.05338

Number of clusters: 100 Maximum cluster size: 4
> QIC(arl.fitted.model.gamma) #1102.12
QIC QICu gQuasi Lik CIC params QICC
1102.12 1101. 25 -543.62 7.44 7.00 1102.49
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Table 5. Deviance test results for Binary response

> #checking model fit by deviance test
> Titted. model.deviance. testing<-gIm{remission_from_anthrax ~ age + medicine + gender
+ +risk+contact_factor+ month,
data=longform.datax, family=binomial(link="Tlogit"))

null.model<- glm(remission_from_anthrax ~ 1,

data=longform. datax,

family=binomial{1ink="Togit"))
> print{deviance<- -2*(TogLik(null.model)-TogLik(fitted. model.deviance.testing)))
"log Lik." 176 (df=1)
> print(p.value<- pchisq{deviance, df=7, Tower.tail = FALSE))
"log Lik." 1.44e-34 (df=1)

B T T PR

+ o+ ¥+
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Table 6A. Binary random slope and intercept output

Generalized Tlinear mixed model fit by maximum Tikelihood (Laplace aApproximation)
glmermod]
Family: binomial ( Togit )
Formula: sideeffects ~ age + medicine + gender + risk + contact_factor +
month + (1 + month | ID)
Data: longform.datax

AIC BIC TogLik deviance df.resid
1408 1458 -694 1388 1190

scaled residuals:
Min 10 Median 30 Max
-2.019 -0.791 -0.295 ©0.848 2,319

random effects:

Groups Mame variance std.Dewv. Corr
ID (Intercept) 2.6907 1.64
month 0.0529 0.23 -1.00

Mumber of obs: 1200, groups: 1ID, 100

Fixed effects:
Estimate std. Error z value Pri=|z|)

(Intercept) 1.875322 0. 381700 4,91 9, 0e-07 #w*®
age -0.000331 0.004713 -0.07 0.944
medicineTx -1.660902 0.212192 -7.83 5.0e-15 #%%
genderm 0.028222 0.144485 0.20 0.845
risk -0.055916 0.051128 -1.09 0.274
contact_factorn -0.309017 0.152663 -2.02 0.043 *
month -0.210731 0.033079 -6.37 1.9e-10 #=%=
Signif. codes: 0O "#¥%' 0,001 ***' 0.01 **" 0.05 ".” 0.1 * ' 1
Correlation of Fixed Effects:

(Intr) age mdcnTx gendrM risk CMtC_N
age -0. 567
medicineTx -0.405 0.125
genderm -0.242 0.102 -0.053
risk -0, 328 -0.1860 0.114 -0.074
chntct_fotrN -0.044 -0.187 -0.228 0.184 0.001
month -0.806 0.000 0.167 0.010 0.029 0.013

convergence code: 0
boundary (singular) fit: see 7TisSingular
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Table 6B. Binary GEE model with AR1 correlation matrix

= summary(arl.fitted. log. model<- geeglm(sideeffects ~ age + medicine + gender

+ +risk+contact_factor+ month ,
+ data=longform. datax, id=ID,
+ family=binomial(Tink="logit"), corstr="arl"))
call:
geeglm{formula = sideeffects ~ age + medicine + gender + risk +
contact_factor + month, family = binomial(1ink = "logit"},
data = longform. datax, id = ID, corstr = "arl")

Coefficients:
Estimate std.err  Wald Pr{=|w|)

{(Intercept) 1.403151 0.299221 21.99 2.7e-06 ***

age 0.000774 0.004209 0.03 0.8542

medicineTx -1.227180 0.125915 94.99 < Ze-16 ***

genderm 0.027827 0.132686 0.04 0.8339

risk -0.040904 0.048234 0.78 0.3763
contact_factorw -0.383146 0.132880 B8.32 0.0039 ==

month -0.163400 0.019103 73.16 <« 2e-16 #*®

signif. codes: @ *#***' 0,001 °***' 0.01 **' 0.053 “." 0.1 °* " 1

Correlation structure = arl
Estimated Scale Parameters:

Estimate std.err
{(Intercept) 0.946 0.0125
Link = identity

Estimated Correlation Parameters:
Estimate std.err

alpha 1] 0
Number of clusters: 1200 Maximum cluster size: 1
> QIC(arl.fitted. Tog.model) #1441
QIC
1441
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Table 6C. Binary GEE model with exchangeable working correlation matrix

= #Fitting GEE model with exchangeable working correlation matrix
> summary(exch. fitted. log. model<- geeglm(sideeffects ~ age + medicine + gender

+ +risk+contact_factor+ month ,
+ data=longform. datax, id=ID,
+ family=binomial (1ink="logit"), corstr="exchange
able™))
Ccall:
geeglm(formula = sideeffects ~ age + medicine + gender + risk +
contact_factor + month, family = binomial(link = "Togit"),
data = Tongform. datax, id = ID, corstr = "exchangeable™)

Coefficients:
Estimate std.err wald pPri=|w|)

{(Intercept) 1.403151 0.299221 21.99 2.7e-0b #*¥*®

age 0.000774 0.004209 0.03 0.8542

medicineTx -1.227180 0.125915 94.99 « 2e-1f %**®

genderm 0.027827 0.132686 0.04 0.8339

risk -0.040904 0.046234 0.78 0.3763
contact_factorw -0.383146 0.132860 B8.32 0.0039 =*

month -0.163400 0.019103 73.16 <« 2e-16 ***

Signif. codes: © "##*' 0,001 "#**' Q.01 **' 0.05 "." 0.1 °* " 1

Correlation structure = exchangeable
Estimated sScale Parameters:

Estimate std.err
(Intercept) 0.946 0.0125
Link = identity

Estimated Correlation Parameters:
Estimate std.err

alpha 0 0
Number of clusters: 1200 Maximum cluster size: 1
> QIC(exch.fitted. Tog.model) #1441
QIC
1441

.
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Table 6D. Binary GEE model with independent working correlation matrix

= #Fitting GEE model with independent working correlation matrix
= summary(ind. fitted. log. model<- geeglm{sideeffects ~ age + medicine + gender

+ +risk+contact_factor+ month ,
+ data=longform.datax, id=ID,
+ family=binomial{Tink="logit"), corstr="independ
ence’" )]
call:
geeglm{formula = sideeffects ~ age + medicine + gender + risk +
contact_factor + month, family = binomial{link = "Togit")},
data = longform.datax, id = ID, corstr = "independence™)

Coefficients:
Estimate std.err Wald Pri=|w|)

(Intercept) 1.403151 0.299221 21.99 2.7e-06 ***

age 0.000774 0.004209 0.03 0.8542

medicineTx -1.227180 0.125915 94.99 <« 2e-16 ***

genderm 0.027827 0.132686 0.04 0.8339

risk -0.040904 0.046234 0.7E 0.3763
contact_factorw -0.383146 0.132860 B8.32 0.0039 ==

month -0.163400 0.019103 73.16 =« 2e-16 #w*

signif. codes: 0O *#**=" 0,001 °***' 0.01 **" 0.05 “." 0.1 * " 1

correlation structure = independence
Estimated Scale Parameters:

Estimate std.err
{Intercept) 0.946 0.0125

Number of clusters: 1200 Maximum cluster size: 1
> QIC(ind. fitted. Tog. model) #1441

QIC

1441
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Table 7. Deviance testing for Poisson response

» #checking model fit

> null.model<- gIm(N_CIGARETTES ~ 1,data=longform.data.cig,family = poisson(link = "Tog"))
> print(deviance<- -2*(TlogLik(null.model)-TogLik({fitted. model)))

"log Lik." 3822 (df=1)

» print(p.value<- pchisg(deviance, df=7, lower.tail=FALSE)})

"log Lik." 0 (df=1)

Table 8A. Random slope and intercept Poisson output

Fixed effects:
Estimate std. Error z value Pri=|z|)

{(Intercept) 0.969602 0.229453 4,23 2.4e-05 #=%
sex_ftacrorm 0.057573 0.075599 Q.76 0.446
treatment_factorTx 0.246997 0.121154 2.04 Q0.041 =

AGE -0.000914 0.002058 -0.44 0.6857
WEIGHIMN 0.000294 0.000674 Q.44 0.663
Intention 0.090183 0.078172 1.15 0.249
Addiction. status 0.508250 0.028599 17.77 = 2e-1f ##%
time.factor -0.230138 0.026989 -8.533 = Ze-1lg #*®*
signif. codes: © "*#**' 0,001 ‘*=' 0.01 “*" 0,05 "." 0.1 * ' 1
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Table 8B. Poisson GEE model with AR1

= summary(arl.fitted.pois.model<- geegIm(N_CIGARETTES ~ sex_factor+treatment_factor+AGE
+ +WEIGHIN+Intention+Addiction. status+time. factor,
+ data=Tongform.data.cig, id=1D, family=poisson(link="1og"), corstr

geegIm(formula = W_CIGARETTES ~ sex_factor + treatment_factor +
AGE + WEIGHIN + Intention + Addiction.Status + time.factor,
family = poisson(Tink = "Tog"), data = longform.data.cig,
id = 1D, corstr = "arl")

Coefficients:
Estimate std.err  Wald Pri>|w|)

(Intercept) 1.351317 0.194269 48.38 3.5e-12 #®#x
sex_factorMm 0.108062 0.062540  2.99 0.084 .
treatment_factorTx -0.419731 0.071240 34.71 3.8e-09 #¥®
AGE -0.001014 0.001818 0.31 0.577
WEIGHIN -0.000217 0.000543 0.16 0.689
Intention -0.026741 0.0674533 0.16 0.692
Addiction. status 0.485724 0.027584 310.07 <« 2Ze-1f #®%*
time.factor -0.121304 0.021708 31.22 2.3e-08 #%*

signif. codes: 0 “®***' 0,001 ***" 0.01 '*" 0.05 '." 0.1 " "1

Correlation structure = arl
Estimated Scale Parameters:

Estimate std.err
(Intercept) 2.65 0.242
Link = identity

Estimated Correlation Parameters:
Estimate std.err
alpha 0.635% 0.0409
Number of clusters: 100 Maximum cluster size: 6
> QIC(arl.fitted.pois.model) #-25573.84 ###% BEST FIT *¥*
QIC QICu quasi Lik CIC params QICC
-25573.84 -235377.27 12796.64 9.72 8.00 -25573.53
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Table 8C. Poisson GEE model with exchangeable working correlation matrix

= #T1tTIng GEE model with exchangeable working correlation matrix

> summary(exch. fitted. pois.model<- geegIm(N_CIGARETTES ~ sex_factor+treatment_factor+AGE

+ +WEIGHIN+Intention+Addiction. status+time. factor,

- data=longform.data.cig, id=Ip, family=poisson{link="1og"),
="exchangeable"))

call:

geegIm(formula = N_CIGARETTES ~ sex_factor + treatment_factor +
AGE + WEIGHIN + Intention + Addiction.status + time.factor,
family = poisson(link = "log"), data = longform.data.cig,
id = ID, corstr = "exchangeable")

Coefficients:

Estimate std. err Wald Pr(=|w]|)
(Intercept) 1.302276 0.198696 42.96 5.6e-11 ##*
sex_factorMm 0.081592 0.062330 1.71 0.1909
treatment_factorTx -0.218584 0.066806 10.71 0.0011 =*=
AGE -0.000817 0.001927 0.18 0.6716
WEIGHIN -0.000147 0.000567 0.07 0.7956
Intention 0.006349 0.065011 0.0 0.9222
Addiction.status 0.47273% 0.027369 298.34 <« Ze-16 #=#*
time.factor -0.121903 0.021956 30.83 2.8e-D8
signif. codes: 0 *“#***' 0,001 “**' Q.01 **' Q.05 *." 0.1 * " 1

Correlation structure = exchangeable
Estimated Scale Parameters:

Estimate std.err
(Intercept) 77 0.238
Link = identity

Estimated Correlation Parameters:
Estimate std.err
alpha Q.465 0.0372

Number of clusters: 100 Maximum cluster size: 6
> QIC(exch.fitted.pois. model) #-23437.9

QIC QICu Quasi Lik CIc params QICC
-25437.9 -25446.3 12731.2 12.2 8.0 -25437.6

=
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Table 8D. Poisson GEE model with independent working correlation matrix

> #Titting GEE model with independent working correlation matrix

> summary(ind.fitted. pois.model<- geeglm(N_CIGARETTES ~ sex_factor+treatment_factor+aGE

+ +WEIGHIN+INntention+Addiction. status+time. factor,

+ data=longform.data.cig, id=ID, family=poisson{link="1og"),
="independence”))

call:

geegim(formula = N_CIGARETTES ~ sex_factor + treatment_factor +
AGE + WEIGHIW + Intention + Addiction.status + time.factor,
family = poisson{link = "log"), data = longform.data.cig,
id = ID, corstr = "independence"”)

Coefficients:
Estimate std.err wWald Pr(=|w|)

(Intercept) 1.425804 0.213231 44.71 2.3e-11 ##%*
sex_factorm 0.115765 0.066592 3.02 0.082 .
treatment_factorTx -0.491531 0.078966 38.75 4.8e-10 ##%

AGE -0.001163 0.001936 0.36 0.548

WEIGHIN -0.000271 0.000576 0.22 0.6837
Intention -0.045144 0.072408 0.39 0.5333
Addiction. status 0.480101 0.028917 275.66 < 2e-16 #***
time.factor -0.1219%04 0.021961 30.81 2.B8e-08 #=%=*
Signif. codes: 0 "#%%' 0,001 ‘=" Q.01 ‘*' Q.05 *." 0.1 ° ' 1

Correlation structure = independence
Estimated Scale Parameters:

Estimate std.err

(Intercept) 2.68 0.252
Number of clusters: 100 Maximum cluster size: 6
> QIC(ind.fitted. pois.model) #-25552.6
QIc aricu quasi Lik CIcC params QICC
-25552.6 -235586.9 12801.5 25.2 B.0 -25552.3
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Table 8D. Poisson GEE model with unstructured working correlation matrix

Call:

geegIm(formula = N_CIGARETTES ~ sex_factor + treatment_factor +
AGE + WEIGHIN + Intention + Addiction.status + time.factor,
family = poisson(link = "Tog"), data = longform.data.cig,
id = ID, corstr = "unstructured™)

Coefficients:
Estimate std. err wald pri=|w|)

{(Intercept) 1.306816 0.1805%27 52.40 4.5e-13 #==
sex_factorm 0.088987 0.061630 2.08 Q.15
treatment_factorTx -0.368115 O0.067765 29.51 5.6e-08 ##=*

AGE -0.001327 0.001764 Q.57 Q.45

WEIGHIM -0. 000223 0.000536 0.17 0. 68
Intention -0.012418 0.067023 Q.03 0. 85
Addiction. status 0.4595116 0.027653 320.57 <« 2Z2e-16 ===
time.factor -0.11%403 0.020837 32.83 1.0e-0Q8 ===
signif. codes: © *#*#*' 0,001 "**' 0.01 **' 0.05 "." 0.1 °* ' 1

Correlation structure = unstructured
Estimated scale Parameters:

Estimate std.err
{(Intercept) 2.67 0.238
Link = identity

Estimated Correlation Parameters:
Estimate std.err

alpha.1:2 0.772 0.1037
alpha.1:3 0.432 0.0860
alpha.1:4 0.110 0.0689
alpha.1:5 -0.164 0.0837
alpha.1l:6 -3.516 0.1154
alpha.2:3 0.537 0.0648
alpha.2:4 0.330 0.0555
alpha.2:5 0.133 0.0745
alpha.2:6 -0.116 0.1083
alpha. 3:4 0,544  0.0544
alpha.3:5 0.512 0.0668
alpha.3:6 0.387 0.0932
alpha.4:5 0.850 0.0782
alpha.4:6 0.879 0.0918
alpha.5:6 1.322 0.1136
Number of clusters: 100 Maximum cluster size: 6
> QIC(uns.fitted. pois.model) #-25552.26
qQIcC QICu Quasi Lik CIC params QICC
-25552.26 -25555.533 12785.76 9.63 B.00 -25550. 34
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#Interim Data Monitoring Clean Code
library (pracma)
library (extraDistr)

FHEA A A R A R A A R AR R R R A
FhAFFEE SRR AAFE SRR A A A E A # 4 H4S POISSON INFERENCE ##########444f 4444440444

FHEFFHAHAAAA A4 *Poisson-Gamma example*#############H4444444
#Root find the parameters alpha, beta to use for the posterior model
p.prior<- 0.3

R0O<- 0.024

beta<- function (alpha) {R0/ (alpha-1)}

eg<- function (alpha) {p.prior-pgamma (R0O,alpha, 1/beta(alpha))}
alpha.sol<- uniroot(eq, c(2,10))S$root

beta.sol<- beta(alpha.sol)

print (alpha.sol)

print (beta.sol)

iZa 2ttt EEE RS
#Model for t1=400
t1=400
prob poigaml<- function(r,n) {
prob poigaml<- r* (n+a-1) *exp (-r* (t1+1/b))
return (unionvector=c (prob_poigaml))
}
areal<- function(n) integrate(prob poigaml, lower=0, upper=Inf, n=n, abs.tol
= 0L )s$value
normalizing.const.poigam<- Vectorize (areal)
n =c(seq(l,22,by=1))
normalizing.const.poigam(n)

prob poigam2<- function(r,n) {
prob poigam2<- (r”(nt+a-1)*exp (-r* (tl+1l/b)))
return (unionvector=c (prob_poigam2))

}

area2<-function(n) integrate (prob poigam2, lower=0, upper=0.024,n=n )S$value
v.areapoigaml<- Vectorize (area?2)

n =c(seq(l,22,by=1))

v.areapoigaml (n)

post.prob.poi.gam.t400<- v.areapoigaml (n)/normalizing.const.poigam(n)

#Model for t2=500

£2=500

prob poigaml<- function(r,n) {
prob poigaml<- r”(n+a-1)*exp (-r* (t2+1/b))
return (unionvector=c (prob poigaml))
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}

areal<- function(n) integrate(prob poigaml, lower=0, upper=Inf, n=n, abs.tol
= 0L )S$value

normalizing.const.poigam<- Vectorize (areal)

n=c(seq(l,22,by=1))

normalizing.const.poigam(n)

prob poigam2<- function(r,n) {
prob poigam2<- (r”(nt+a-1)*exp (-r* (t2+1/b)))
return (unionvector=c (prob poigam2))

}

area2<- function(n) integrate (prob poigam2, lower=0, upper=0.024, n=n)Svalue
v.areapoigaml<- Vectorize (area?2)

n =c(seq(l,22,by=1))

v.areapoigaml (n)

post.prob.poi.gam.t500<- v.areapoigaml (n)/normalizing.const.poigam(n)

#Model for t3=500
t3=600
prob poigaml<- function(r,n) {
prob poigaml<- r™ (n+a-1) *exp (-r* (t3+1/b))
return (unionvector=c (prob_poigaml))
}
areal<- function(n) integrate(prob poigaml, lower=0, upper=Inf, n=n, abs.tol
= 0L )s$value
normalizing.const.poigam<- Vectorize (areal)
n =c(seq(l,22,by=1))
normalizing.const.poigam(n)

prob poigam2<- function(r,n) {
prob poigam2<- (r”(nt+a-1)*exp (-r* (t3+1/b)))
return (unionvector=c (prob_poigam2))

}

area2<-function(n) integrate (prob poigam2, lower=0, upper=0.024,n=n )$value
v.areapoigaml<- Vectorize (area?2)

n =c(seq(l,22,by=1))

v.areapoigaml (n)

post.prob.poi.gam.t600<- v.areapoigaml (n)/normalizing.const.poigam(n)

#These are the posterior probabilities at t=400,500,600 for this conjugate
model
print (post.prob.poi.gam.t400)
print (post.prob.poi.gam.t500)
152



print (post.prob.poi.gam.t600)

#H#fH#F S #H S POISSON INVERSE GAMMA ** % &k k ok &k &okok

#Poisson-inverse gamma example

library (invgamma)

p.prior<- 0.3

RO<- 0.024

beta<- function (alpha) {RO* (alpha+1) }

eqg<- function (alpha) {p.prior-pinvgamma (RO, alpha, beta(alpha))}
alpha.sol<- uniroot(eq, c(1,10)) Sroot

beta.sol<- beta(alpha.sol)

print (alpha.sol)

print (beta.sol)

# Model for t1=400

£1=400
poi.invgaml<- function(r,n) {
poi.invgaml<- r” (n-a-1)*exp (- (r*tl+b/r))

return (unionvector=c (poi.invgaml))

areal<- function(n) integrate(poi.invgaml, lower=0, upper=Inf, n=n, abs.tol =
0L )sSvalue

nonconj.normalizing.const<- Vectorize (areal)

n =c(seq(l,30,by=1))

nonconj.normalizing.const (n)

poi.invgam2<- function(r,n) {
poi.invgam2<- r” (n-a-1)*exp (- (r*tl+b/r))
return (unionvector=c (poi.invgam?2))

area2<- function(n) integrate(poi.invgam2, lower=0, upper=0.024,n=n )S$value
v.areapoigaml<- Vectorize (area?2)

n =c(seq(l,30,by=1))

v.areapoigaml (n)

post.prob.poi.invgam.t400<- v.areapoigaml (n)/nonconj.normalizing.const (n)

# Model for t2=500

£2=500
poi.invgaml<- function(r,n) {
poi.invgaml<- r” (n-a-1)*exp (- (r*t2+b/r))

return (unionvector=c (poi.invgaml))
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areal<- function(n) integrate (poi.invgaml, lower=0, upper=Inf, n=n, abs.tol =
0L )Svalue

nonconj.normalizing.const<- Vectorize (areal)

n =c(seq(l,30,by=1))

nonconj.normalizing.const (n)

poi.invgam2<- function(r,n) {
poi.invgam2<- r” (n-a-1)*exp (- (r*t2+b/r))
return (unionvector=c (poi.invgam?2))

area2<- function (n) integrate (poi.invgam2, lower=0, upper=0.024,n=n )Svalue
v.areapoigaml<- Vectorize (area?2)

n=c(seq(l,30,by=1))

v.areapoigaml (n)

post.prob.poi.invgam.t500<-v.areapoigaml (n) /nonconj.normalizing.const (n)

# Model for t3=500

£3=600
poi.invgaml<- function(r,n) {
poi.invgaml<- r” (n-a-1)*exp (- (r*t3+b/r))

return (unionvector=c (poi.invgaml))

areal<- function(n) integrate(poi.invgaml, lower=0, upper=Inf ,n=n, abs.tol =
0L )sSvalue

nonconj.normalizing.const<- Vectorize (areal)

n =c(seq(l,30,by=1))

nonconj.normalizing.const (n)

poi.invgam2<- function(r,n) {
poi.invgam2<- r” (n-a-1)*exp (- (r*t3+b/r))
return (unionvector=c (poi.invgam?2))

area2<- function(n) integrate(poi.invgam2, lower=0, upper=0.024,n=n )S$value
v.areapoigaml<- Vectorize (area?2)

n=c (seq(l,30,by=1))

v.areapoigaml (n)

post.prob.poi.invgam.t600<- v.areapoigaml (n)/nonconj.normalizing.const (n)

#These are the posterior probabilities at t=400,500,600 for this nonconj
model

print (post.prob.poi.invgam.t400)

print (post.prob.poi.invgam.t500)

print (post.prob.poi.invgam.t600)
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#Normal-Normal example
delta=8

sigma=17.4

n=30

hypothesized vals = c(seq(-10,7,by=0.10))

estimate sigma<- function(delta,prior) {
estimated sigma <- (-delta)/gnorm((l-prior))
return (estimated sigma)

}

sigmalO<- estimate sigma(8,0.8)

prob norm.norm<- function(n,mean diff) {
numerator=-((delta)/ (sigma0~2)+ (hypothesized vals*n)/(2*sigma”2))
denominator<- sqrt ((1/sigma0”2)+n/ (2*sigma”2))
probability <- l-pnorm(numerator/denominator)
return (unionvector<- c(probability))

}

prob norm.norm(n, hypothesized vals)

#Normal-Normal non bayesian estimation of sample size
sample.size.est<- function (alpha,beta) {
n <- 2*(sigma/delta) "2* ((gnorm(l-alpha)-gnorm(beta))"2)
return (n)
}
n<- sample.size.est(0.05,0.25)
ceiling (n)
#Computing the actual probability of type 2 error
alpha=0.05
beta=0.25
k=gnorm(l-alpha)
type2 beta<- pnorm(k-(delta/ (sigma*sqgrt(2/ceiling(n)))))
print (type2 beta)

FH# xR AxFxxkk TRYING A NORMAL WITH CAUCHY PRIQR F**&*xkoksx

sigma<- 17.4

p.prior<- 0.8

deltal<- 8

sigma0<- -deltaO/tan(pi/2-pi*p.prior)
n<- 30

p.post<- c ()

for (d in seg(-10.3, 5.3, by=0.1)){
func<- function (x) {exp (- (x-d) "2/ (4*sigma”~2/n))/ (1+(x-deltal)~2/sigmal0"2) }
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i<- round (10* (d+10.3)+1,0)
p.post[i]<- integrate (func, 0, Inf)s$value/integrate (func, -Inf, Inf)S$value

round (p.post, 5)

S
FHEFHH AR EHH A H AL 44444 BINOMIAL INFERENCE ####### 444444444444 4F4E444
#Calculating Numeric Binomial\Beta example

#Code to get alpha/beta parameter estimates

N<- 110

p.prior<- 0.4

mode<- 0.23

p0<- 0.25

beta<- function (alpha) { (alpha-1)/mode+2-alpha}

eg<- function (alpha) {p.prior-pbeta(p0,alpha, beta(alpha))}
alpha.sol<- uniroot(eq, c(1,7))Sroot

beta.sol<- beta(alpha.sol)

print (alpha.sol)
print (beta.sol)

#Specifying a normalizing constant (denominator) for bin-beta posterior
x = c(seq(l,100,by=1))
binbetal <- function (p,x) {
binbetal<- (p” (x+a-1)*(1-p) " (N-x+b-1))
return (unionvector=c (binbetal))
}
area<- function(x) integrate(binbetal, lower=0, upper=1l, x=x, abs.tol=
0L) Svalue
binbetal.area<- Vectorize (area)
x =c(seqg(l1,100,by=1))
binbetal.area (x)

binbeta2<- function(p,x) {
binbeta2<- (p” (x+a-1)*(1-p)”" (N-x+b-1))
return (unionvector=c (binbeta2))
}
area<- function(x) integrate(binbeta2, lower=0, upper=0.25,x=x )S$value
binbeta2.area<- Vectorize (area)
x =c(seq(1l,100,by=1))
binbeta2.area (x)

post prob binbeta=binbetal.area(x)/binbetal.area (x)
print (post prob binbeta) #Looks good
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#4## ########## CALCULATING BINOMIAL TRUNCATED NORMAL POSTERIOR
N=110
x = c(seq(l,100,by=1))

#The parameters are reused from the Bin/Beta example as it is impossible
#to estimate them with this prior

mu=0.5

sigma=1/4

#These constants basically disappear during integration. It's useless
#regardless of what values they are

alpha=(a-mu) /sigma

beta= (b-mu) /sigma

#Specifying the Normalizing constant (denominator)
TN1 <- function(p,x) {
al<- p*(x)*(l-p) "~ (N-x)
bl<- exp (- (p-mu) "2/ (2*sigma2))
cl<- sigma*sqgrt (2*pi) * (pnorm(beta) -pnorm(alpha))
TN1<- (al*bl)/cl
return (unionvector=c (TN1))

area<- function(x) integrate(TN1l, lower=0, upper=1l, x=x, abs.tol= 0L)S$value
TN1l.area<- Vectorize (area)

x=c (seq(1,100,by=1))

TN1l.area (x)

#Specifying the Posterior function (numerator)
TN2<- function (p,x) {
a2<- p” (x)* (1-p) * (N-x)
b2<- exp (- (p—mu) "2/ (2*sigma~2))
c2<- sigma*sqgrt (2*pi) * (pnorm(beta)-pnorm(alpha))
TN2<- (a2*b2)/c2
return (unionvector=c (TN2))
}
area<- function(x) integrate(TN2, lower=0, upper=0.25, x=x)S$value
TN2 .area<- Vectorize (area)
x=c (seq(1,100,by=1))
TN2.area (x)

post.TN.probs=TN2.area (x) /TNl.area (x)
print (post.TN.probs)

FH4HHHF S EHE S S EF S E44#4 SEQUENTIAL DOUBLE INTEGRAL EXAMPLE IN SECTION 4.1.3
iR L LT
#Type 1 error (l-alpha)
hl<- function(x, y) exp(-0.5* (x"2+y"2))
157



Fl<- function(x) {
fun <- function(y) (1/(2*pi)) * h(x, vy)
integrate (fun, -Inf, k*sqgrt(2)-x)Svalue
}

Fl<- Vectorize (F1) # requested when using integrate ()

eq typel<- function (k) {integrate(Fl, -Inf, k)}

#The way I go about solving for the parameters is by testing numbers out

#Try k=3
k=k1=3
eq_typel (k1) #0.9975426

#Try k=2
k=k2=2
eq typel (k2) #0.9620106

#Try k=1.75
k=k3=1.75
eq typel (k3) #0.9350068

#The root 1is somewhere between k=1.75 and k=2

#Try k=1.9
k=k4=1.9
eq_typel (k4) #0.9525778

#Try k=1.8
k=k5=1.8
eq_typel (k5)#0.9413549

¥Try k=1.85
k=k6=1.85
eq typel (k6) #0.9472036

#Try k=1.88

k=k7=1.88

eq_typel(k7) #0.9499485, Close enough! So we set our k=1.88
k=1.88

iE s s s ST E LA EEEEEE
#Type 2 error (beta)
h<- function(x, y) exp(-0.5*(x"2+y"2))
F2<- function(x) {
fun<- function(y) (1/(2*pi)) * h(x, y)
area<-integrate (fun, -Inf, k*sqrt(Z)—Z*sqrt(nistar)—x)$Value
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}
F2<- Vectorize (F2) # requested when using integrate ()
eq type2<- function(n_ star) {integrate(F2, -Inf, k-sqgrt(n _star))}

#The way I go about solving for the parameters is by testing numbers out

#Try n_star=3
n star=n starl=3
eq_type2(n_starl) #0.2535443

#Try n star=2
n_star=n star2=3.1
eq_type2(n_star2)#0.2410883

#Try n_star=3.5
n_star=n star3=3.5
eq_type2(n_star3)#0.1963617

#The root is somewhere in between 3 and 3.1

#Try n_star=3.05
n_star=n star4=3.05
eq _type2(n_stard4) #0.2472497

#Now, the root is somewhere between 3 and 3.05

#Try n_star=3.03

n star=n star5=3.03

eq type2(n_star5) #0.2497515, Close enough! So let n star=3.03
n star=3.03

igsassdddssassddiaaaasdddsaadaddisaaaaddiasaaadiattndi
#DETERMINING THE SAMPLE SIZE (SEE SECTION 4.1.3) #######4##4

sigma=17.4
alpha=0.05
beta=0.25
delta=8

n=(n_star*2*sigma*sigma)/ (delta”"2)
print (n)

print(ceiling(n))# From this data, 29 patients are needed

FHEFHFAE AR R A R A R R A R R A R R R R R R
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